LiBr.
<h3>Explanation</h3>
Note that the group number in this answer refers to the new IUPAC group number, which ranges from 1 to 18. Counts from the left. Start with the first two column (group 1 and 2), go on to the transition elements (Sc, Ti, etc. in group 3 through 12), and continue with the nonmetals (group 13 through 18).
Li is a group 1 metal. As a metal, it tends to form positive ions ("cations"). Metals in group 1 and 2 are <em>main group</em> metals. The charge on main group metal ions tends to be the same as the group number of the metal. Li is in group 1. The charge on an Li ion will be +1. Formula of the Li ion will be
.
Br is a group 17 nonmetal. As a nonmetal, it tends to form negative ions ("anions"). The charge on nonmetal ions excepting for H tends to equal the group number of the nonmetal minus 18. Br is in group 17. The charge on a Br ion will be 17 - 18 = -1. Formula of the Br ion will be 
All the ions in an ionic compound carry charge. However, some of the ions like
are positive. Others ions like
are negative. Charge on the two types of ions balance each other. As a result, the compound is <em>overall</em> neutral.
1 × (+1) + 1 × (-1) = 0. The positive charge on one
ion balances the negative charge on one
ion. The two ions would pair up at a 1:1 ratio.
The empirical formula for an ionic compound shows all the ions in the compound. Positive ions are written in front of negative ions.
is positive and
is negative. The formula shall also show the simplest ratio between the ions. For the compound between Li and Br, a 1:1 ratio will be the simplest. The "1" subscript in an empirical formula can be omitted. Hence the formula: LiBr.
The limiting reagent when 5 g of NaOH and 4.4 g CO₂ allowed to react will be NaOH
<h3>What is Limiting reagent ?</h3>
The limiting reactant (or limiting reagent) is the reactant that gets consumed first in a chemical reaction and therefore limits how much product can be formed.
Given chemical equation in balanced form ;
2NaOH(s) + CO₂(g) → Na₂CO₃(s) + H₂O(l).
According to the Chemical equation ;
- The limiting reagent when 5 g of NaOH and 4.4 g CO₂ allowed to react will be NaOH
If 44 g CO₂ requires 80 g of NaOH, therefore, 4.4 g CO₂ will require atleast 8 g of NaOH.
But the available quantity is 5 g NaOH. thus, NaOH is the Limiting reagent.
- 6.625 g of Na₂CO₃ are expected to be produced 5.0 g of NaOH and 4.4 g of CO₂ are allowed to react
As 80 g NaOH produces 106 g of Na₂CO₃.
Therefore 5 g NaoH will produce ;
106 / 80 x 5 = 6.625 g
Learn more about limiting reagent here ;
brainly.com/question/11848702
#SPJ1
Answer:
Have only single bonds.
Explanation:
Hello,
In this case, we need to remember that saturation is a state at which a carbon chain contains no insaturations, that is neither double nor triple bonds such case are alkenes and alkynes, but saturations only which are characterized by the presence of single bonds between adjacent carbon atoms. Such is the case of ethane (CH₃-CH₃), propane (CH₃-CH₂-CH₃), butane (CH₃-CH₂-CH₂-CH₃) and so on.
Best regards.
5 sig figs! count everything after the decimal