Answer:
Age ≅ 7500 years
Explanation:
All radioactive decay is 1st order kinetics and described by the expression
A = A₀e^-kt => t = ln(A/A₀) / -k
k = 0.693 / t(half life) = (0.693 / 5730)yrs⁻¹ = 1.21 x 10⁻⁴ yrs⁻¹
t = Age = [ln(0.103/0.255) / - 1.21 x 10⁻⁴] yrs = 7500 years
[CO] = 1 mol / 2L = 0.5 M
[
According to the equation:
and by using the ICE table:
CO(g) + H2O(g) ↔ CO2(g) + H2(g)
initial 0.5 0.5 0 0
change -X -X +X +X
Equ (0.5-X) (0.5-X) X X
when Kc = X^2 * (0.5-X)^2
by substitution:
1.845 = X^2 * (0.5-X)^2 by solving for X
∴X = 0.26
∴ [CO2] = X = 0.26
Answer:
See explanation below
Explanation:
The question is incomplete. However, here's the missing part of the question:
<em>"For the following reaction, Kp = 0.455 at 945 °C: </em>
<em>C(s) + 2H2(g) <--> CH4(g). </em>
<em>At equilibrium the partial pressure of H2 is 1.78 atm. What is the equilibrium partial pressure of CH4(g)?"</em>
With these question, and knowing the value of equilibrium of this reaction we can calculate the partial pressure of CH4.
The expression of Kp for this reaction is:
Kp = PpCH4 / (PpH2)²
We know the value of Kp and pressure of hydrogen, so, let's solve for CH4:
PpCH4 = Kp * PpH2²
*: You should note that we don't use Carbon here, because it's solid, and solids and liquids do not contribute in the expression of equilibrium, mainly because their concentration is constant and near to 1.
Now solving for PpCH4:
PpCH4 = 0.455 * (1.78)²
<u><em>PpCH4 = 1.44 atm</em></u>
Explanation:
when an iron bar rust is an example of a chemical change in which a new substance is formed and the change is not easily reversible.for iron to rust moisture and air must be present.while when a substance freezes,it can be easily reversed through melting and no new substance is formed.this change is termed a physical change.
<span>A 50 kg student runs up a flight of stairs that is 6 m high. How much work is done? 3000 J. Calculate the work done when a force of 1 N moves a book 2 m. 2 J .... 200 W, 100 W. Calculate the power expended when a 500. N barbell is lifted 2.2 m in 2.0 seconds. 550 W. energy. the property of an object or system that ...</span>