The two main types of chemical bonds are ionic and covalent bonds. An ionic bond essentially donates an electron to the other atom participating in the bond, while electrons in a covalent bond are shared equally between the atoms. The only pure covalent bonds occur between identical atoms.
Answer:
ΔHorxn = - 11.79 KJ
Explanation:
2 SO 2 ( g ) + O 2 ( g ) ⟶ 2 SO 3 ( g )
The standard enthalpies of formation for SO 2 ( g ) and SO 3 ( g ) are Δ H ∘ f [ SO 2 ( g ) ] = − 296.8 kJ / mol Δ H ∘ f [ SO 3 ( g ) ] = − 395.7 kJ / mol
From the reaction above, 2 mol of SO2 reacts to produce 2 mol of SO3. Assuming ideal gas behaviour,
1 mol = 22.4l
x mol = 2.67l
Upon cross multiplication and solving for x;
x = 2.67 / 22.4 = 0.1192 mol
0.1192 mol of SO2 would react to produce 0.1192 mol of SO3.
Amount of heat is given as;
ΔHorxn = ∑mΔHof(products) − ∑nΔHof(reactants)
Because O2(g) is a pure element in its standard state, ΔHοf [O2(g)] = 0 kJ/mol.
ΔHorxn = 0.1192 mol * (− 395.7 kJ / mol) - 0.1192 mol * ( − 296.8 kJ / mol)
ΔHorxn = - 47.17kj + 35.38kj
ΔHorxn = - 11.79 KJ
Solid, ductile (can conduct heat), malleable (can be shaped differently).
It is a weighted average of the atomic masses of the naturally occurring isotopes of the element.
Answer: A. Inverse relationship
Explanation: A plot illustrates that as x increases, y decreases - an inverse relationship.