Answer:
A
The nuber of each one should be same
Answer:
A the answer is A I'm sure
<span>Answer:
</span><span>
</span><span>
</span><span>Li⁺ (aq) + OH⁻ (aq) + H⁺ (aq) + Cl⁻(aq) → Li⁺ (aq) + Cl⁻ (aq) + H₂O(l)</span><span />
<span>Explanation:
</span>
<span>1) Combine the cation Li⁺ (aq) with the anion Cl- (aq) to form LiCl(s).
</span>
<span>LiCl is a solid soluble substance, a typical ionic compound. So, it will reamain as separate ions in the product side: Li⁺ + CL⁻</span>
<span>2) Combine the anion OH⁻ with the cation H⁺ to form H₂O(l).
</span>
<span>Since, the ionization of H₂O is low, it will remain as liquid in the product side: H₂O(l)</span>
<span>3) Finally, you can wirte the total ionic equation:
</span>
Li⁺ (aq) + OH⁻ (aq) + H⁺ (aq) + Cl⁻(aq) → Li⁺ (aq) + Cl⁻ (aq) + H₂O(l)
Xe is bigger:)
I hope I helped:)
Please leave a thanks:)
Answer:
7.81 moles
Explanation:
To solve this problem, let us generate an expression involving volume and number of mole of the gas since the pressure and temperature of the gas are constant.
From ideal gas equation:
PV = nRT
Divide both side by P
V= nRT/P
Divide both side by n
V/n = RT/P
Since RT/P are constant, then:
V1/n1 = V2/n2
Data obtained from the question include:
V1 = 4.11
n1 = 2.51 moles
V2 = 16.9L
n2 =?
Using the above equation i.e V1/n1 = V2/n2, the final number of the gas can be obtained as illustrated below:
4.11/2.51 = 16.9/n2
Cross multiply to express in linear form
4.11 x n2 = 2.51 x 16.9
Divide both side by 4.11
n2 = (2.51 x 16.9) / 4.11
n2 = 10.32moles
Now, to obtain the number of mole of the gas added, we'll subtract the initial mole from the final mole i.e
n2 — n1
Number of mole added = n2 — n1
10.32 — 2.51 = 7.81 moles
Therefore, 7.81 moles of the gas was added to the container