Answer:
88.2 C
Explanation:
The current can be defined as the rate of flow of charge in a conductor.
The relation between charge current and time is given as
I = Q/T
I = current, Q= charge and T = time
that is ampere = coulomb / second
The amount of charge passed is from the negative to the positive terminal
shall be given by:
Q = I * t = 3.5mA * 7h * 3600s/h = 88.2 C
Note: take care of the units.
Answer:
Explained below
Explanation:
To explain this, let's consider a tennis ball being launched from the top of a very high building.
Now, if the tennis ball is launched horizontally without any upward angle but with an initial velocity of 10 m/s. In this motion, If there is no gravity, the tennis ball would continue in motion at that same speed of 10 m/s in the horizontal direction. However, in reality, gravity causes the tennis ball to accelerate downwards at a rate of 9.8 m/s for every second. This implies that the vertical velocity component is changing at the rate of 9.8 m/s every second.
Thus, after 1 second, horizontal velocity component will remain 10 m/s and vertical component will be 9.8 m/s × 1 = 9.8 m/s downwards.
Also, after 2 seconds, the vertical velocity component will remain 10 m/s, however the vertical component will now be 9.8 × 2 = 19.6 m/s downwards.
Same procedure is repeated as t increases by 1 second.
The comparison of the forces in a small nucleus to the forces of a large one is the fact that they are capable of holding the protons and neutrons which made it no matter what their size may be. Therefore, as long as there is a nucleus, their forces can both hold together the two atoms tight.
This is due to earths location in the solar system. Earth is in the habitat zone or the Goldie locks zone, in this zone it's not too hot or not too cold for water to exist. Other planets in different star systems have liquid oceans due to them being in the habitat zone.