Answer: here you go I was looking for this answer everywhere,I have it now so it’s 6.30 x 10^-7 s
Explanation:
I hope this helps☺️
Explanation:
First, find the velocity of the projectile needed to reach a height h when fired straight up.
Given:
Δy = h
v = 0
a = -g
Find: v₀
v² = v₀² + 2aΔy
(0)² = v₀² + 2(-g)(h)
v₀ = √(2gh)
Now find the height reached if the projectile is launched at a 45° angle.
Given:
v₀ = √(2gh) sin 45° = √(2gh) / √2 = √(gh)
v = 0
a = -g
Find: Δy
v² = v₀² + 2aΔy
(0)² = √(gh)² + 2(-g)Δy
2gΔy = gh
Δy = h/2
The force which has the greatest effect on causing this object to slow while it remains in contact with the ramp is: B. a frictional force.
<h3>What is a force?</h3>
A force can be defined as a push or pull of an object or physical body, which typically results in a change of motion (acceleration), especially due to the interaction of the object with another.
<h3>The types of force.</h3>
In Science, there are different types of force and these include the following:
<h3>What is a
frictional force?</h3>
Friction force can be defined as a type of force that resists and slows the relative motion of two physical objects when there surfaces come in contact. This ultimately implies that, a frictional force prevents two surfaces from easily sliding over or slipping across one another.
In this context, we can infer and logically deduce that the force which has the greatest effect on causing this object to slow while it remains in contact with the ramp is a frictional force.
Read more on frictional force here: brainly.com/question/25253774
#SPJ1
Complete Question:
Brandon pushes an object on a ramp as shown in the diagram.
While Brandon pushes the object and it remains in contact the ramp, which force has the greatest effect on causing it to slow?
A. the applied force
B. a frictional force
C. the force due to gravity
D. a force of air resistance
<h3><u>Given</u><u>:</u><u>-</u></h3>
Force,F = 100 N
Acceleration,a = 5 m/s²
<h3><u>To</u><u> </u><u>be</u><u> </u><u>calculated:-</u><u> </u></h3>
Calculate the mass of the box .
<h3><u>Formula</u><u> </u><u>used:-</u><u> </u></h3>

<h3><u>Solution:-</u><u> </u></h3>

★ Substituting the values in the above formula,we get:



The right answer for the question that is being asked and shown above is that: "C. <span>. The properties change going across each row. " the </span>statement that applies to the horizontal rows or periods in the periodic table is that t<span>he properties change going across each row. </span>