Answer:
The rate of change of the height is 0.021 meters per minute
Step-by-step explanation:
From the formula

Differentiate the equation with respect to time t, such that


To differentiate the product,
Let r² = u, so that

Then, using product rule
![\frac{dV}{dt} = \frac{1}{3}\pi [u\frac{dh}{dt} + h\frac{du}{dt}]](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5Bu%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20h%5Cfrac%7Bdu%7D%7Bdt%7D%5D)
Since 
Then, 
Using the Chain's rule

∴ ![\frac{dV}{dt} = \frac{1}{3}\pi [u\frac{dh}{dt} + h(\frac{du}{dr} \times \frac{dr}{dt})]](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5Bu%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20h%28%5Cfrac%7Bdu%7D%7Bdr%7D%20%5Ctimes%20%5Cfrac%7Bdr%7D%7Bdt%7D%29%5D)
Then,
![\frac{dV}{dt} = \frac{1}{3}\pi [r^{2} \frac{dh}{dt} + h(2r) \frac{dr}{dt}]](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5Br%5E%7B2%7D%20%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20h%282r%29%20%5Cfrac%7Bdr%7D%7Bdt%7D%5D)
Now,
From the question


At the instant when 
and 
We will determine the value of h, using





Now, Putting the parameters into the equation
![\frac{dV}{dt} = \frac{1}{3}\pi [r^{2} \frac{dh}{dt} + h(2r) \frac{dr}{dt}]](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5Br%5E%7B2%7D%20%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20h%282r%29%20%5Cfrac%7Bdr%7D%7Bdt%7D%5D)
![236 = \frac{1}{3}\pi [(99)^{2} \frac{dh}{dt} + (\frac{20}{363\pi }) (2(99)) (7)]](https://tex.z-dn.net/?f=236%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5B%2899%29%5E%7B2%7D%20%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20%28%5Cfrac%7B20%7D%7B363%5Cpi%20%7D%29%20%282%2899%29%29%20%287%29%5D)
![236 \times 3 = \pi [9801 \frac{dh}{dt} + (\frac{20}{363\pi }) 1386]](https://tex.z-dn.net/?f=236%20%5Ctimes%203%20%3D%20%5Cpi%20%5B9801%20%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20%28%5Cfrac%7B20%7D%7B363%5Cpi%20%7D%29%201386%5D)






Hence, the rate of change of the height is 0.021 meters per minute.
Ok there are 48000 mL in 48L.
The function g(x) is g(x)= (3x)^2
<h3>
How to solve for g(x)?</h3>
The complete question is in the image
From the graph in the image, we have:
f(x) = x^2
The function f(x) is stretched by a factor of 3 to form g(x).
This means that:
g(x) = f(3x)
So, we have:
g(x)= (3x)^2
Hence, the function g(x) is g(x)= (3x)^2
Read more about function transformation at:
brainly.com/question/10222182
#SPJ1
Answer: 0.2
Step-by-step explanation:
Consider the following functions. f=[(-1,1),(1,-2),(3,-4) and g=[(5,0),(-3,4),(1,1),(-4,1)} Find (f-g)(1) =
Vilka [71]
The difference between the functions give:
(f - g)(1) = f(1) - g(1) = -3
<h3>
How to find the difference between the functions?</h3>
For two functions f(x) and g(x), the difference is defined as:
(f - g)(x) = f(x) - g(x).
Then:
(f - g)(1) = f(1) - g(1)
By looking at the given tables, we know that:
f(1) = -2
g(1) = 1
Replacing that we get:
(f - g)(1) = f(1) - g(1) = -2 - 1 = -3
If you want to learn more about difference of functions:
brainly.com/question/17431959
#SPJ1