Answer:
- 11040 m³
- k ≈ 0.33
- V = (1/3)Bh
Step-by-step explanation:
The given relation is ...
V = kBh . . . . . for some base area B, height h, and constant of variation k
We are given length and width of the base so we presume it is a rectangle.
B = l·w = 8·11 = 88 . . . . square meters
The given volume tells us the value of k:
1144 = k(88)(39) . . . . . . cubic meters
1144/3432 = k = 1/3 ≈ 0.33
The value of k is about 0.33.
__
Then the volume of the larger pyramid is ...
V = (1/3)(15 m)(46 m)(48 m) = 11,040 m³
The general relationship is ...
V = 1/3Bh
Answer:
true 7x+5y=9
Step-by-step explanation:
Answer:
Hence, Grasshopper will land on the ground after 1.5 sec.
Step-by-step explanation:
It s given that:
The height, in feet, of the grasshopper above the ground after t seconds is modeled by the function:

Now we are asked to find:
In how many seconds will the grasshopper land on the ground?
i.e. we have to find the value of t such that h(t)=0
i.e.

i.e. we need to find the roots of the given quadratic equation.
On solving the quadratic equation or plotting it's graph we could observe that the point where h(t)=0 are:

As time can't be negative hence we will consider:

Hence, grasshopper will land on the ground after 1.5 sec.
Answer:28.8 ounces
Step-by-step explanation:20% -36 =22.8
150x100= 15,000 square meters
150x2= 300
100 + 300 = 400 meters of fencing