1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kvasek [131]
3 years ago
6

determine the shape and explain what type of distribution the data has. 110, 107, 105, 108, 108, 107, 108, 105, 106, 87, 85, 88,

89, 92, 95, 96, 94, 95, 91, 90, 100, 99, 98, 97, 95, 92, 105
Mathematics
1 answer:
BartSMP [9]3 years ago
8 0

Answer:

it is right skewed

Step-by-step explanation:

So since the mean is bigger than the median it would be right skewed so everything going to the left

You might be interested in
Two of the interior angles of a triangle are 50° and 75°. Which of the following could be a measure of an exterior angle of the
Karolina [17]

Answer:

Step-by-step explanation:

so, 50+75=125.

180-125=55.

There can be-

130, 95, and 125

8 0
2 years ago
Please answer ASAp I need this for my quiz ill give brainliest and ill thank you if its correct please i need a better grade .
zzz [600]

Answer:

I have made it in above picture

5 0
3 years ago
This is important please help I will give brainiest​
hodyreva [135]
D. Bobby drew a diagram that’s not a function.

You can see by the arrows, function means domain cannot have two different ranges. Bobby made a mistake since it should’ve been a function
8 0
3 years ago
Pleassssseeee help. I neeed help
xz_007 [3.2K]

Answer:

B.

Step-by-step explanation:

Took the test :}

4 0
3 years ago
Prove that: (b²-c²/a)CosA+(c²-a²/b)CosB+(a²-b²/c)CosC = 0​
IRISSAK [1]

<u>Prove that:</u>

\:\:\sf\:\:\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C=0

<u>Proof: </u>

We know that, by Law of Cosines,

  • \sf \cos A=\dfrac{b^2+c^2-a^2}{2bc}
  • \sf \cos B=\dfrac{c^2+a^2-b^2}{2ca}
  • \sf \cos C=\dfrac{a^2+b^2-c^2}{2ab}

<u>Taking</u><u> </u><u>LHS</u>

\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C

<em>Substituting</em> the value of <em>cos A, cos B and cos C,</em>

\longmapsto\left(\dfrac{b^2-c^2}{a}\right)\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+\left(\dfrac{c^2-a^2}{b}\right)\left(\dfrac{c^2+a^2-b^2}{2ca}\right)+\left(\dfrac{a^2-b^2}{c}\right)\left(\dfrac{a^2+b^2-c^2}{2ab}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2-a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2-b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2-c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2)-(b^2-c^2)(a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2)-(c^2-a^2)(b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2)-(a^2-b^2)(c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^4-c^4)-(a^2b^2-a^2c^2)}{2abc}\right)+\left(\dfrac{(c^4-a^4)-(b^2c^2-a^2b^2)}{2abc}\right)+\left(\dfrac{(a^4-b^4)-(a^2c^2-b^2c^2)}{2abc}\right)

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2}{2abc}+\dfrac{c^4-a^4-b^2c^2+a^2b^2}{2abc}+\dfrac{a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>On combining the fractions,</em>

\longmapsto\dfrac{(b^4-c^4-a^2b^2+a^2c^2)+(c^4-a^4-b^2c^2+a^2b^2)+(a^4-b^4-a^2c^2+b^2c^2)}{2abc}

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2+c^4-a^4-b^2c^2+a^2b^2+a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>Regrouping the terms,</em>

\longmapsto\dfrac{(a^4-a^4)+(b^4-b^4)+(c^4-c^4)+(a^2b^2-a^2b^2)+(b^2c^2-b^2c^2)+(a^2c^2-a^2c^2)}{2abc}

\longmapsto\dfrac{(0)+(0)+(0)+(0)+(0)+(0)}{2abc}

\longmapsto\dfrac{0}{2abc}

\longmapsto\bf 0=RHS

LHS = RHS proved.

7 0
3 years ago
Other questions:
  • Write an express equivalent to 7/8
    15·1 answer
  • The expression -6x-7(4+3x)is equivalent to
    12·1 answer
  • Gavin can count 10 numbers at a time.
    11·1 answer
  • I need help on this problem ​
    15·1 answer
  • PLS HELP<br> What is the value of x ?<br><br> A. 42<br><br> B. 43<br><br> C. 84<br><br> D. 86
    9·2 answers
  • What is the answer to 3 x 2 1/4=
    6·1 answer
  • The diameter of a spherical basketball is 10 inches.
    14·1 answer
  • 1) In your own words, explain when (-3)n is positive and when it is negative.​
    9·1 answer
  • I WANT SOLUTION AND EXPLANATION ANSWER IS GIVEN AT LAST!!!
    11·2 answers
  • Using ƒ(x) = 3x − 3 and g(x) = -x, find g(ƒ(x))<br> a. 3x+3<br> b. 3-3x<br> c.-3-3x<br> d. 2x-3
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!