Answer:

Step-by-step explanation:
![\displaystyle \frac{3\sqrt{3}}{2}a^2 = A \hookrightarrow \frac{3\sqrt{3}}{2}6^2 = A \\ \frac{3\sqrt{3}}{2}[36] = A; 54\sqrt{3}\:[or\:93,530743609...] \\ \\ \boxed{93,5 \approx A}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B3%5Csqrt%7B3%7D%7D%7B2%7Da%5E2%20%3D%20A%20%5Chookrightarrow%20%5Cfrac%7B3%5Csqrt%7B3%7D%7D%7B2%7D6%5E2%20%3D%20A%20%5C%5C%20%5Cfrac%7B3%5Csqrt%7B3%7D%7D%7B2%7D%5B36%5D%20%3D%20A%3B%2054%5Csqrt%7B3%7D%5C%3A%5Bor%5C%3A93%2C530743609...%5D%20%5C%5C%20%5C%5C%20%5Cboxed%7B93%2C5%20%5Capprox%20A%7D)
I am joyous to assist you at any time.
We can start by finding the gradient of LM

Two perpendicular lines will meet the requirement

×

=-1
Two parallel lines have equal gradients
NM is perpendicular to LM, hence the gradient of NM is -1
KN is a line that is parallel to NM, hence the gradient is 1
KL is perpendicular to LM, hence the gradient of KL is -1
Answer:hahahhahsvdbcnxhbxbebdhsgdbxhxhhd
Step-by-step explanation:
Answer: they got 40 votes
Step-by-step explanation:
because 10+10+10+10 eqauls 40 yw friend follow me on tiktok @tayleerosee