Answer:
oki! Mizuki here to help! 12 will be your answer!
Step-by-step explanation:
Soo... The ratio of blue to green is 4:3 right?
and there are 21 balloons!
4 + 3 is 7! So we divide 21 by 7 and get 3!
Then we multiply 3 by the number of blue balloons(aka 4) and get 12!
Answer:
![\large\boxed{D.\ 2x^2y\sqrt[5]{7xy^3}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7BD.%5C%202x%5E2y%5Csqrt%5B5%5D%7B7xy%5E3%7D%7D)
Step-by-step explanation:
![\sqrt[5]{224x^{11}y^8}\\\\=\sqrt[5]{(32)(7)x^{5+5+1}y^{5+3}}\\\\\text{use}\ a^na^m=a^{n+m}\\\\=\sqrt[5]{(2^5)(7)x^5x^5x^1y^5y^3}\\\\\text{use}\ \sqrt[n]{ab}=\sqrt[n]{a}\cdot\sqrt[n]{b}\\\\=\sqrt[5]{2^5}\cdot\sqrt[5]{x^5}\cdot\sqrt[5]{x^5}\cdot\sqrt[5]{y^5}\cdot\sqrt[5]{7xy^3}\\\\\text{use}\ \sqrt[n]{a^n}=a\\\\=2\cdot x\cdot x\cdot y\cdot\sqrt[5]{7xy^3}\\\\=2x^2y\sqrt[5]{7xy^3}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B224x%5E%7B11%7Dy%5E8%7D%5C%5C%5C%5C%3D%5Csqrt%5B5%5D%7B%2832%29%287%29x%5E%7B5%2B5%2B1%7Dy%5E%7B5%2B3%7D%7D%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20a%5Ena%5Em%3Da%5E%7Bn%2Bm%7D%5C%5C%5C%5C%3D%5Csqrt%5B5%5D%7B%282%5E5%29%287%29x%5E5x%5E5x%5E1y%5E5y%5E3%7D%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20%5Csqrt%5Bn%5D%7Bab%7D%3D%5Csqrt%5Bn%5D%7Ba%7D%5Ccdot%5Csqrt%5Bn%5D%7Bb%7D%5C%5C%5C%5C%3D%5Csqrt%5B5%5D%7B2%5E5%7D%5Ccdot%5Csqrt%5B5%5D%7Bx%5E5%7D%5Ccdot%5Csqrt%5B5%5D%7Bx%5E5%7D%5Ccdot%5Csqrt%5B5%5D%7By%5E5%7D%5Ccdot%5Csqrt%5B5%5D%7B7xy%5E3%7D%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20%5Csqrt%5Bn%5D%7Ba%5En%7D%3Da%5C%5C%5C%5C%3D2%5Ccdot%20x%5Ccdot%20x%5Ccdot%20y%5Ccdot%5Csqrt%5B5%5D%7B7xy%5E3%7D%5C%5C%5C%5C%3D2x%5E2y%5Csqrt%5B5%5D%7B7xy%5E3%7D)
3/65
is the awnser.good day
50-35.65
=15.35 Rs is the amount the boy got from the shopkeeper
Answer:
range of f(x) = [-4, -2) ∪ [2, 8)
a+b+c+d = -4
Step-by-step explanation:
The graph is attached. The range is the vertical extent of the function. It is defined at f(0) = -4 and f(2) = 2.
The limits f(2-) and f(4-) are -2 and 8, respectively, so the graph has open circles there. These are the ends of the two half-open intervals that make up the range of the function.
The portion of the graph in the domain [4, 7) is included in the range [2, 8), so no special treatment is needed for that piece of the function.