Answer:
1310.8 feet^3 to nearest tenth.
Step-by-step explanation:
To find the volume we need to find the depth.
The length of the diagonal helps us to do this. We apply the Pythagoras theorem to the triangle formed by the length, the diagonal and the depth (d):
17.8^2 = d^2 + 16.6^2
d^2 = 17.8^2 - 16.6^2
d^2 = 41.28
So the depth d = 6.42 feet.
Thus, the volume = 16.6 * 12.3 * 6.42
= 1310.8 feet^3.
Answer:
The data table is attached below.
Step-by-step explanation:
The average of a set of data is the value that is a representative of the entire data set.
The formula to compute averages is:

Compute the average for drop 1 as follows:
![\bar x_{1}=\frac{1}{3}\times[10+11+9]=10](https://tex.z-dn.net/?f=%5Cbar%20x_%7B1%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Ctimes%5B10%2B11%2B9%5D%3D10)
Compute the average for drop 2 as follows:
![\bar x_{2}=\frac{1}{3}\times[29+31+30]=30](https://tex.z-dn.net/?f=%5Cbar%20x_%7B2%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Ctimes%5B29%2B31%2B30%5D%3D30)
Compute the average for drop 3 as follows:
![\bar x_{3}=\frac{1}{3}\times[59+58+61]=59.33](https://tex.z-dn.net/?f=%5Cbar%20x_%7B3%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Ctimes%5B59%2B58%2B61%5D%3D59.33)
Compute the average for drop 4 as follows:
![\bar x_{4}=\frac{1}{3}\times[102+100+98]=100](https://tex.z-dn.net/?f=%5Cbar%20x_%7B4%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Ctimes%5B102%2B100%2B98%5D%3D100)
Compute the average for drop 5 as follows:
![\bar x_{5}=\frac{1}{3}\times[122+125+127]=124.67](https://tex.z-dn.net/?f=%5Cbar%20x_%7B5%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Ctimes%5B122%2B125%2B127%5D%3D124.67)
The data table is attached below.
Answer:
7
Step-by-step explanation:
1, 1, 2, 4, 7, 8, 10, 15, 20
median = 7
Answer:
The coordinates of the vertex is (6,4).
Step-by-step explanation:
The vertex is the highest or lowest point on the parabola (curved line).
Answer:
irrational number i believe
Step-by-step explanation: