Answer:
8
Step-by-step explanation:
→ Use trigonometry to find x, we have no hypotenuse so we utilise the TOA formula
TOA = Tan = Opposite ÷ Adjacent
→ The opposite of the triangle is 8√3 and we want to find the adjacent of this triangle so we rearrange
Opposite ÷ Tan
→ Substitute in the values
8√3 ÷ tan(60) = 8
Answer:
The domain is (-∞ , -3) ∪ (-3, ∞) ⇒ D
Step-by-step explanation:
<em>The domain of the rational fraction is t</em><em>he values of x which make the fraction defined</em><em>. That means </em><em>the domain does not contain the values of x which make the denominator equal to 0</em><em>.</em>
∵ g(x) = ![\frac{1}{x+3}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bx%2B3%7D)
∴ The denominator = x + 3
→ Equate the denominator by 0
∵ x + 3 = 0
→ Subtract 3 from both sides
∴ x + 3 - 3 = 0 - 3
∴ x = -3
→ That means the domain can not have -3 because it makes the denominator
equal to 0
∴ The domain is all values of real numbers except x = -3
∴ The domain = {x : x ∈ R, x ≠ -3}
∴ The domain = (-∞ , -3) ∪ (-3, ∞)
Answer:
1 zillionaire rbdgdhdndimoobenh
Answer: 120[4(x^6 + x^3 + x^4 + x) +7(x^7 + x^4 + x^5 + x^2)]
Step-by-step explanation:
=24x(x^2 + 1)4(x^3 + 1)5 + 42x^2(x^2 + 1)5(x^3 + 1)4
Remove the brackets first
=[(24x^3 +24x)(4x^3 + 4)]5 + [(42x^4 +42x^2)(5x^3 + 5)4]
=[(96x^6 + 96x^3 +96x^4 + 96x)5] + [(210x^7 + 210x^4 + 210x^5 + 210x^2)4]
=(480x^6 + 480x^3 + 480x^4 + 480x) + (840x^7 + 840x^4 + 840x^5 + 840x^2)
Then the common:
=[480(x^6 + x^3 + x^4 + x) + 840(x^7 + x^4 + x^5 + x^2)]
=120[4(x^6 + x^3 + x^4 + x) +7(x^7 + x^4 + x^5 + x^2)]
Answer:
66 galletas
Step-by-step explanation:
Si 3/11 de una caja contiene 18 galletas entonces matematicamente significa que:
![\frac{3}{11}g=18](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B11%7Dg%3D18)
Donde g son las galletas, ahora vamos a aislar la variable g:
![\frac{3}{11}g=18\\\\(\frac{11}{3}) \frac{3}{11} g=18 (\frac{11}{3})\\\\g= \frac{198}{3}=66](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B11%7Dg%3D18%5C%5C%5C%5C%28%5Cfrac%7B11%7D%7B3%7D%29%20%5Cfrac%7B3%7D%7B11%7D%20g%3D18%20%28%5Cfrac%7B11%7D%7B3%7D%29%5C%5C%5C%5Cg%3D%20%5Cfrac%7B198%7D%7B3%7D%3D66)
Entonces una caja contiene 66 galletas