Answer:
As ΔABC is an <u>isosceles triangle</u>:
⇒ BA = BC
(the dashes on the line segments indicate they are of equal measure)
⇒ ∠BAC = ∠BCA = 55°
⇒ ∠BCA = ∠BAD = 55°
Angles on a <u>straight line</u> sum to 180°
⇒ ∠ADE + ∠EDC = 180°
⇒ 98° + ∠EDC = 180°
⇒ ∠EDC = 82°
As BE intersects AC, the <u>vertically opposite angles</u> are <em>equal</em>:
⇒ ∠BDC = ∠ADE = 98°
⇒ ∠ADB = ∠EDC = 82°
Interior angles in a triangle sum to 180°
⇒ ∠BAD + ∠ADB + ∠ABD = 180°
⇒ 55° + 82° + ∠ABD= 180°
⇒ ∠ABD = 180° - 55° - 82°
⇒ ∠ABD = 43°
Answer:
y = 2 - 
Step-by-step explanation:
results in a parabola (U-shape). Adding a negative in front of it flips the parabola to look like an upside-down U.
The 2 makes it shift up two decimal spots to (0,2).
Answer:

Step-by-step explanation:
we are given the endpoint i.e P and Q of a line segment
we want to figure out the Midpoint of the Line segment
in order to do so we can use Midpoint formula given by

so let

substitute

simplify addition:

simplify division:

hence,
the Midpoint of the line segment is (3,1)
6/2*3 / 3(3)
First simplify the numerator: 6/2*3 = 3*3 = 9
Next simplify the denominator: 3(3) = 3*3 = 9
So you have 9/9, which equals 1.
The 3rd answer is correct.
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em><em>⤴</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em><em>.</em><em>✔</em><em>✔</em><em>:</em><em>)</em>