Since liquid CO2 cannot exist at pressures lower than 5.11 atm, the triple point is defined as 56.6 °C and 5.11 atm.
Are CO2 liquids explosive?
Although it can impair judgement at high doses, carbon dioxide is neither poisonous nor combustible. Asphyxiation is typically seen as the primary risk associated with CO2. The Boiling Liquid Expanding Vapour Explosion, however, is a serious risk connected to compressed CO2 (BLEVE)
What PSI does CO2 turn into liquid at?
Only at pressures more than 5.1 atm does liquid carbon dioxide form; the triple point of carbon dioxide is approximately 518 kPa at 56.6 °C. Depending on the pressure, the liquid's boiling point ranges from -70°F to +88°F. The expansion ratio when vaporised at 60°F is 535:1. CO2 is a gas or liquid.
Toknw more about Liquid CO2 visit:
https://brainly.in/question/16890479
#SPJ4
Answer: See description
Explanation:
Kepler's laws have three principal points:
1. planets orbit the sun in elliptical paths
2. the orbial period is related to the orbital distance by 
where T is the orbital period and d is the orbital distance, T is in years and d is measured in units of the earth sun distance.
3. planets closer to the sun move faster than planets far away from it.
Newton:
Newton discovered that there is a consequence to the gravity exerted by objects: mass, the heavier the planet, the more gravitational force it posseses ( thats why we orbit the sun)
with the gravitational force
newton discovered the inverse-quadratic relationship between the distance of the planets and the acceleration exerted by the force one could exert on another.
Kepler's laws were mostly based on observed evidence with quantitative relationships between the mentioned variables. Newton's laws are based on calculus and symbolic equations. While Kepler's mode is basic, Newton took another step in and build a more general model for gravity (which was improved by general relativity later). In a nutshell Newton proved the scientific causes for Kepler's laws...
The volume of CO2 at STP =124.298 L
<h3>Further explanation</h3>
Given
Reaction
4 KMnO4, +4 C3H5(OH)5, -7K2CO3, + 7 Mn2O3, +5 CO2, + 16 H2O
701,52 g of KMnO4
Required
volume of CO2 at STP
Solution
mol KMnO4 (MW=158,034 g/mol) :
mol = mass : MW
mol = 701.52 : 158.034
mol = 4.439
mol CO2 from equation : 5/4 x mol KMnO4 = 5/4 x 4.439 = 5.549
At STP 1 mol = 22.4 L, so for 5.549 moles :
=5.549 x 22.4
=124.298 L