If this were to be graphed, the independent variable would be the price of the ticket for the rides. The dependent variable would be the total cost.
The fair admission is not a variable because it is a constant price for every single person who goes into the fair.
The problem asks to use y to represent the total cost and x to represent the number of ride tickets. In order to fully write out the equation, we have to figure out what the fair admission costs.
43.75 = 1.25(25) + b
*b represents the fair admission
Multiply 1.25 by 25
43.75 = 31.25 + b
Subtract 31.25 to find what b costs.
12.50 = b
The fair admission costs $12.50.
Solution: y = 1.25x + 12.50
Let x represent the side length of the square end, and let d represent the dimension that is the sum of length and girth. Then the volume V is given by
V = x²(d -4x)
Volume will be maximized when the derivative of V is zero.
dV/dx = 0 = -12x² +2dx
0 = -2x(6x -d)
This has solutions
x = 0, x = d/6
a) The largest possible volume is
(d/6)²(d -4d/6) = 2(d/6)³
= 2(108 in/6)³ = 11,664 in³
b) The dimensions of the package with largest volume are
d/6 = 18 inches square by
d -4d/6 = d/3 = 36 inches long
1/29 or 29/100 would be your awnser
9514 1404 393
Answer:
558
Step-by-step explanation:
Let p represent the student population at Edison Jr High. Then we know ...
(4/9)p = 248 . . . . . 248 students is 4/9 of the student population
p = 248(9/4) = 558 . . . multiply the equation by 9/4
558 students attend Edison Jr. High.
Answer:
b) x+6
Step-by-step explanation: