Answer:
Since 4 is the largest number its the hypotenuse. The two 3s are equal so they are interchangeable so it doesn't matter where you put them. If its a right triangle the hypotenuse is opposite the right angle.
Step-by-step explanation:
Answer:
C. x > 15
Step-by-step explanation:
Furthest from 0, so I am going to take the absolute value of these numbers. The absolute value will tell us how far away from 0 these numbers are.
|-1/2| = |- 0.5| = 0.5
|8/9| = |0.88| = 0.88
|0.2| = 0.2
so the number furthest from 0 is 8/9
Answer:
True.
Step-by-step explanation:
The explicit form for an arithmetic sequence is:

where
is the first term and
is the common difference.
The common difference here is 2 because the y's are going up by 2 while the x's are going up by 1.
Yes, the common difference is the slope.
So we have d=2.
The first term is 9.5 because that is what happens when x=1.
x is n.
y is
.
So the answer is true.
----
You can also verify by plugging in numbers for n and see if you get the outputs mentioned in the pairs given:
Let n=1:




Let n=2:




Let n=3:




Let n=4:




Let n=5:




Let n=6:




We have confirmed that we get all 6 of the mentioned points using the equation they gave.
![\bf \cfrac{\sqrt[4]{63}}{4\sqrt[4]{6}}\qquad \begin{cases} 63=3\cdot 3\cdot 7\\ 6=2\cdot 3 \end{cases}\implies \cfrac{\sqrt[4]{3\cdot 3\cdot 7}}{4\sqrt[4]{2\cdot 3}}\implies \cfrac{\underline{\sqrt[4]{3}}\cdot \sqrt[4]{3}\cdot \sqrt[4]{7}}{4\sqrt[4]{2}\cdot \underline{\sqrt[4]{3}}} \\\\\\ \cfrac{\sqrt[4]{3}\cdot \sqrt[4]{7}}{4\sqrt[4]{2}}\implies \cfrac{\sqrt[4]{3\cdot 7}}{4\sqrt[4]{2}}\implies \cfrac{\sqrt[4]{21}}{4\sqrt[4]{2}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B63%7D%7D%7B4%5Csqrt%5B4%5D%7B6%7D%7D%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0A63%3D3%5Ccdot%203%5Ccdot%207%5C%5C%0A6%3D2%5Ccdot%203%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%5Ccdot%203%5Ccdot%207%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5Ccdot%203%7D%7D%5Cimplies%20%5Ccfrac%7B%5Cunderline%7B%5Csqrt%5B4%5D%7B3%7D%7D%5Ccdot%20%5Csqrt%5B4%5D%7B3%7D%5Ccdot%20%5Csqrt%5B4%5D%7B7%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%5Ccdot%20%5Cunderline%7B%5Csqrt%5B4%5D%7B3%7D%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%7D%5Ccdot%20%5Csqrt%5B4%5D%7B7%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%5Ccdot%207%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D)
![\bf \textit{now, rationalizing the denominator}\\\\ \cfrac{\sqrt[4]{21}}{4\sqrt[4]{2}}\cdot \cfrac{\sqrt[4]{2^3}}{\sqrt[4]{2^3}}\implies \cfrac{\sqrt[4]{21}\cdot \sqrt[4]{8}}{4\sqrt[4]{2}\cdot \sqrt[4]{2^3}}\implies \cfrac{\sqrt[4]{21\cdot 8}}{4\sqrt[4]{2\cdot 2^3}}\implies \cfrac{\sqrt[4]{168}}{4\sqrt[4]{2^4}} \\\\\\ \cfrac{\sqrt[4]{168}}{4\cdot 2}\implies \cfrac{\sqrt[4]{168}}{8}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bnow%2C%20rationalizing%20the%20denominator%7D%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Ccdot%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B2%5E3%7D%7D%7B%5Csqrt%5B4%5D%7B2%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%5Ccdot%20%5Csqrt%5B4%5D%7B8%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%5Ccdot%20%5Csqrt%5B4%5D%7B2%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%5Ccdot%208%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5Ccdot%202%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5E4%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B4%5Ccdot%202%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B8%7D)
and is all you can simplify from it.
so... all we did, was rationaliize it, namely, "getting rid of the pesky radical at the bottom", we do so by simply multiplying it by something that will raise the radicand, to the same degree as the root, thus the radicand comes out.