Answer:
x = √47
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Trigonometry</u>
- [Right Triangles Only] Pythagorean Theorem: a² + b² = c²
Step-by-step explanation:
<u>Step 1: Define</u>
We have a right triangle. We can use PT to solve for the missing side length.
<u>Step 2: Identify Variables</u>
Leg <em>a</em> = 5
Leg <em>b </em>= <em>x</em>
Hypotenuse <em>c</em> = √72
<u>Step 3: Solve for </u><em><u>x</u></em>
- Substitute [PT]: 5² + x² = (√72)²
- Exponents: 25 + x² = 72
- Isolate <em>x</em> term: x² = 47
- Isolate <em>x</em>: x = √47
Answer:
Step-by-step explanation:
The posssible factors are
x^2 + 4x - 32
(x+8)(x-4)
x^2+ 14x - 32
(x+16)(x-2)
(x+32)(x-1)
x^2+31x-32
I don't know what the "lowest y-intercept means" so if you can reiterate and clarify I'd appreciate it, but if you understand what you're looking for then I assume that a graph would be helpful. An online useful graphing site I like is desmos. Hope I helped.
Answer:
1.101, 1.001, and 0.113
Step-by-step explanation:
the first on is the highest
plz leave a like and brainlest!! i need 10 to ask a quistion!!!
Y=a(x-h)^2+k
vertex form is basically completing the square
what you do is
for
y=ax^2+bx+c
1. isolate x terms
y=(ax^2+bx)+c
undistribute a
y=a(x^2+(b/a)x)+c
complete the square by take 1/2 of b/a and squaring it then adding negative and postive inside
y=a(x^2+(b/a)x+(b^2)/(4a^2)-(b^2)/(4a^2))+c
complete square
too messy \
anyway
y=2x^2+24x+85
isolate
y=(2x^2+24x)+85
undistribute
y=2(x^2+12x)+85
1/2 of 12 is 6, 6^2=36
add neagtive and postivie isnde
y=2(x^2+12x+36-36)+85
complete perfect square
y=2((x+6)^2-36)+85
distribute
y=2(x+6)^2-72+85
y=2(x+6)^2+13
vertex form is
y=2(x+6)^2+13