No, we can't say force is useful or harmful. All else being equal, force is either not harmful or useful depending on the body that is applying it and where it is applying it.
Given how it affects motion, force is a crucial idea. It is a relationship that, in the absence of an opposing force, modifies an object's motion. However, a push or a pull that any object feels is the simplest definition of force. Due to the fact that force is a vector quantity, it possesses both a magnitude and a direction.
How force is useful
A body at rest can move with enough force.A body in motion may be slowed down or stopped by it.It has the power to quicken the pace of an object in motion.Along with its shape and size, it can also alter the direction of a moving body.
How force is harmful
- Force has the power to alter an object's state of motion.
- Moving objects can shift direction due to force.
- Moving things' speeds can be increased by force.
- Moving items can become slower due to force.
- Force has the power to alter an object's shape.
Learn more about force here
brainly.com/question/14362949
#SPJ9
Answer:
P = 180.81 J
Explanation:
Given that,
Mass of a object, m = 4.1 kg
It is lifted to a height of 4.5 m
We need to find the potential energy of the object due to gravity. It is given by the formula as follows :
P = mgh Where g is acceleration due to gravity
P = 4.1 kg × 9.8 m/s² × 4.5 m
P = 180.81 J
Hence, the potential energy is 180.81 J.
Answer:
5.2791264*10¹³
Explanation:
Convert the 9 years to seconds and then multiple it by 186000
Answer:
The voltage across the capacitor is 1.57 V.
Explanation:
Given that,
Number of turns = 10
Diameter = 1.0 cm
Resistance = 0.50 Ω
Capacitor = 1.0μ F
Magnetic field = 1.0 mT
We need to calculate the flux
Using formula of flux

Put the value into the formula


We need to calculate the induced emf
Using formula of induced emf

Put the value into the formula

Put the value of emf from ohm's law





We know that,


We need to calculate the voltage across the capacitor
Using formula of charge


Put the value into the formula


Hence, The voltage across the capacitor is 1.57 V.