Answer:
The work done on the suitcase is, W = 600 J
Explanation:
Given,
The average force exerted by Jose on his suitcase, F = 60 N
Jose carried the suitcase to a distance, S = 10 m
The work done on the suitcase is given by the relation
<em>W = F x S</em>
Substituting the given values in the above equation,
W = 60 N x 10 m
= 600 J
Hence, the work done on the suitcase is, W = 600 J
Answer:
73 db
Explanation:
A single air conditioner is equivalent to 70 dB frequency. An extra air conditioning unit would therefore double the sound frequency. It does not, however, double the decibels to 140 dB. Instead, it adds only 3 dB to the 70 dB, making the total decibels of two air conditioning units equal to 73 db
Hence the correct option is b that is 73 db
Answer:
the distance traveled by the fish is 3648 m
Explanation:
In general, animals have a small period of acceleration, which we will despise after which they travel at a constant speed so we can use the kinematic equations in uniform motion
We reduce the units to System SI
t = 2 min (60s / 1 min) = 120 s
Calculate
V = x / t
x= V t
x = 30.4 120
x = 3648 m
This is the distance traveled by the fish
Answer:
426.84 m
Explanation:
initial velocity u = 0
time t = 3.3 s
distance travelled s = 53.4 m
acceleration due to gravity = g
s = ut + 1/2 g t²
53.4 = 0 + 1/2 g x 3.3²
g = 9.8 m /s²
For the whole length of fall
distance travelled = h
total time = 6.6 + 3.3 = 9.9 s
h = ut + 1/2 g t²
u again = 0
h = .5 x 9.8 x 9.9²
= 480.24 m
distance travelled in last 6.6 s
= 480.24 - 53.4
= 426.84 m
Answer:
C. Up, equal to the can's weight
Explanation:
You are camping in the breathtaking mountains if Colorado. You spy an unopened diet soda can floating motionless below the surface of a lake. What is the direction and amount of force the water exerts on it?
A. Zero
B. Down, equal to the can's weight
C. Up, equal to the can's weight
D. Not enough information is given
from the principle of flotation which states that a
When a body displaces a weight of water equal to its own weight, it floats. : A floating object displaces a weight of fluid equal to its own weight. ... Archimedes' principle equates the buoyant force to the weight of the fluid displaced.
the upthrust (this is the upward vertical force exerted on an object in fluid)in the water equals the weight of the body in water it floats.