D is the answer trust me have faith it’s for the glory of humanity
Answer:
a) 4.98m/s²
b) 481.66N
Explanation:
a) Using the Newtons second law of motion

m is the mass of the object
g is the acceleration due to gravity
Fm is the moving force acting along the plane
Ff is the frictional force opposing the moving froce
a is the acceleration of the skier
Given
m = 60kg
g = 9.8m/s²
= 35°
Ff = 38.5N
Required
acceleration of the skier a
Substituting into the formula;

Hence the acceleration of the skier is 4.98m/s²
b) The normal force on the skier is expressed as;
N = Wcosθ
N = mgcosθ
N = 60(9.8)cos 35°
N = 588cos 35°
N = 481.66N
Hence the normal force on the skier is 481.66N
First, determine the mass of the object by dividing its weight on Earth by 9.8 m/s² as shown below,
m = 250 N / 9.8 m/s² = 25.51 kg
Then, multiply the obtained mass by the acceleration due to gravity (g) on Pluto.
W (in Pluto) = (25.51 kg) x (0.61 m/s²) = 15.56 N
Therefore, the object will only weigh 15.56 N.
Most marine bioluminescence is blue-green, which is easier to see in the deep ocean
Explanation:
As per science, Emission and production of light by a living organism is defined as Bioluminescence. Bioluminescence occurs widely in marine animals whereas it is triggered by a physical disturbance is seen by humans, such as a moving boat hull or waves.
Throughout the water column bioluminescent organisms live and bioluminescence is extremely common in deep sea which shows that visible spectrum is more limited to marine animals than humans.
Answer:
A) T1 = 269.63 K
T2 = 192.59 K
B) W = -320 KJ
Explanation:
We are given;
Initial volume: V1 = 7 m³
Final Volume; V2 = 5 m³
Constant Pressure; P = 160 KPa
Mass; m = 2 kg
To find the initial and final temperatures, we will use the ideal gas formula;
T = PV/mR
Where R is gas constant of helium = R = 2.0769 kPa.m/kg
Thus;
Initial temperature; T1 = (160 × 7)/(2 × 2.0769) = 269.63 K
Final temperature; T2 = (160 × 5)/(2 × 2.0769) = 192.59 K
B) world one is given by the formula;
W = P(V2 - V1)
W = 160(5 - 7)
W = -320 KJ