Answer:
Let X the random variable that represent the delivery times of a population, and for this case we know the distribution for X is given by:
Where
and
Since the distribution of X is normal then we know that the distribution for the sample mean
is given by:
And we have;


Step-by-step explanation:
Assuming this question: The delivery times for all food orders at a fast-food restaurant during the lunch hour are normally distributed with a mean of 14.7 minutes and a standard deviation of 3.7 minutes. Let R be the mean delivery time for a random sample of 40 orders at this restaurant. Calculate the mean and standard deviation of
Round your answers to two decimal places.
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the delivery times of a population, and for this case we know the distribution for X is given by:
Where
and
Since the distribution of X is normal then we know that the distribution for the sample mean
is given by:
And we have;


Fewer meters, centimeters are too small of a unit to measure a doorway
Draw a cartesian graph and draw the points in , then see where c should be to get a right angled triangle
Answer:
3.6 x 10⁵ g of sodium chloride
Step-by-step explanation:
You have shared the situation (problem), except for the directions: What are you supposed to do here? I can only make a educated guesses. See below:
Note that if <span>ax^2+bx+5=0 then it appears that c = 5 (a rational number).
Note that for simplicity's sake, we need to assume that the "two distinct zeros" are real numbers, not imaginary or complex numbers. If this is the case, then the discriminant, b^2 - 4(a)(c), must be positive. Since c = 5,
b^2 - 4(a)(5) > 0, or b^2 - 20a > 0.
Note that if the quadratic has two distinct zeros, which we'll call "d" and "e," then
(x-d) and (x-e) are factors of ax^2 + bx + 5 = 0, and that because of this fact,
- b plus sqrt( b^2 - 20a )
d = ------------------------------------
2a
and
</span> - b minus sqrt( b^2 - 20a )
e = ------------------------------------
2a
Some (or perhaps all) of these facts may help us find the values of "a" and "b." Before going into that, however, I'm asking you to share the rest of the problem statement. What, specificallyi, were you asked to do here?