Taking into account the definition of enthalpy of a chemical reaction, the quantity of heat released when 5.87 moles of CH₄ are burned is 4,707.74 kJ.
The enthalpy of a chemical reaction as the heat absorbed or released in a chemical reaction when it occurs at constant pressure. That is, the heat of reaction is the energy that is released or absorbed when chemicals are transformed into a chemical reaction.
The enthalpy is an extensive property, that is, it depends on the amount of matter present.
In this case, the balanced reaction is:
CH₄ (g) + 2 O₂ (g) → CO₂ (g) + 2 H₂O(g)
and the enthalpy reaction ∆H° has a value of -802 kJ/mol.
This equation indicates that when 1 mole of CH₄ reacts with 2 moles of O2, 802 kJ of heat is released.
When 5.87 moles of CH₄ are burned, then you can apply the following rule of three: if 1 mole of CH₄ releases 802 kJ of heat, 5.87 moles of CH₄ releases how much heat?

<u><em>heat= 4,707.74 kJ</em></u>
Finally, the quantity of heat released when 5.87 moles of CH₄ are burned is 4,707.74 kJ.
Learn more:
Answer:
ummm according 2 me babies are consumers and rocks are also consumers
Hydrogen and Helium cannot bond together. Put aside the inertness of helium (or all noble gases), bond formation is only favored when the final state of the two elements is more stable than their initial state. ... Helium compounds has some predictions though none of them contain only those two elements.
Answer:
Explanation:
a) In an exothermic reaction, the energy transferred to the surroundings from forming new bonds is ___more____ than the energy needed to break existing bonds.
b) In an endothermic reaction, the energy transferred to the surroundings from forming new bonds is ___less____ than the energy needed to break existing bonds.
c) The energy change of an exothermic reaction has a _____negative_______ sign.
d) The energy change of an endothermic reaction has a ____positive________ sign.
The energy changes occur during the bonds formation and bonds breaking.
There are two types of reaction endothermic and exothermic reaction.
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Answer:
C. 26.4 kJ/mol
Explanation:
The Chen's rule for the calculation of heat of vaporization is shown below:
![\Delta H_v=RT_b\left [ \frac{3.974\left ( \frac{T_b}{T_c} \right )-3.958+1.555lnP_c}{1.07-\left ( \frac{T_b}{T_c} \right )} \right ]](https://tex.z-dn.net/?f=%5CDelta%20H_v%3DRT_b%5Cleft%20%5B%20%5Cfrac%7B3.974%5Cleft%20%28%20%5Cfrac%7BT_b%7D%7BT_c%7D%20%5Cright%20%29-3.958%2B1.555lnP_c%7D%7B1.07-%5Cleft%20%28%20%5Cfrac%7BT_b%7D%7BT_c%7D%20%5Cright%20%29%7D%20%5Cright%20%5D)
Where,
is the Heat of vaoprization (J/mol)
is the normal boiling point of the gas (K)
is the Critical temperature of the gas (K)
is the Critical pressure of the gas (bar)
R is the gas constant (8.314 J/Kmol)
For diethyl ether:



Applying the above equation to find heat of vaporization as:
![\Delta H_v=8.314\times307.4 \left [ \frac{3.974\left ( \frac{307.4}{466.7} \right )-3.958+1.555ln36.4}{1.07-\left ( \frac{307.4}{466.7} \right )} \right ]](https://tex.z-dn.net/?f=%5CDelta%20H_v%3D8.314%5Ctimes307.4%20%5Cleft%20%5B%20%5Cfrac%7B3.974%5Cleft%20%28%20%5Cfrac%7B307.4%7D%7B466.7%7D%20%5Cright%20%29-3.958%2B1.555ln36.4%7D%7B1.07-%5Cleft%20%28%20%5Cfrac%7B307.4%7D%7B466.7%7D%20%5Cright%20%29%7D%20%5Cright%20%5D)

The conversion of J into kJ is shown below:
1 J = 10⁻³ kJ
Thus,

<u>Option C is correct</u>