Answer:
16.46 g.
Explanation:
- It is a stichiometry problem.
- We should write the balance equation of the mentioned chemical reaction:
<em>2Cu + Zn(NO₃)₂ → Zn + 2Cu(NO₃).</em>
- It is clear that 2.0 moles of Cu reacts with 1.0 mole of Zn(NO₃)₂ to produce 1.0 mole of Zn and 2.0 moles of Cu(NO₃).
- We need to calculate the number of moles of the reacted Cu (32.0 g) using the relation:
<em>n = mass / molar mass</em>
- The no. of moles of Cu = mass / atomic mass = (32.0 g) / (63.546 g/mol) = 0.503 mol.
<u><em>Using cross multiplication:</em></u>
2.0 moles of Cu produces → 1.0 mole of Zn, from the stichiometry.
0.503 mole of Cu produces → ??? mole of Zn.
- The no. of moles of Zn produced = (1.0 mol)(0.503 mol) / (2.0 mol) = 0.2517 mol.
∴ The grams of Zn produced = no. of moles x atomic mass of Zn = (0.2517 mol)(65.38 g/mol) = 16.46 g.
Explanation:
The electrical force between two objects is given by the formula as follows :

k is electrostatic constant
q₁ and q₂ are electric charges
d is distance between charges
So, the two force between two charged objects depends on the product of charges and distance between charges.
Answer:

Explanation:
= Concentration of stock solution
= Concentration of solution
= Volume of stock solution = 19 mL
= Volume of solution = 0.31 L= 310 mL
We have the relation


The concentration of the diluted solution will be 0.613 times the concentration of the stock solution.
Mass of KCl= 1.08 g
<h3>Further explanation</h3>
Given
1 g of K₂CO₃
Required
Mass of KCl
Solution
Reaction
K₂CO₃ +2HCl ⇒ 2KCl +H₂O + CO₂
mol of K₂CO₃(MW=138 g/mol) :
= 1 g : 138 g/mol
= 0.00725
From the equation, mol ratio K₂CO₃ : KCl = 1 : 2, so mol KCl :
= 2/1 x mol K₂CO₃
= 2/1 x 0.00725
= 0.0145
Mass of KCl(MW=74.5 g/mol) :
= mol x MW
= 0.0145 x 74.5
= 1.08 g
Intermolecular forces in solids are strongest than in liquids and gases. Gases have the least strong intermolecular forces. Intermolecular forces are weak and are significant over short distances between molecules (determined by Coulomb’s law). The farther away from the molecules the weaker the intermolecular forces. Since molecules in solids are the closest, the intermolecular force between them as the strongest. Conversely, since gas molecules are farthest apart, the intermolecular forces between them are the weakest.