Answer:
Explanation:
Given
Velocity = 388m/s
Height S = 2.89m
Required
Time
Using the equation of motion
S =ut+1/2gt²
2.89 = 388t+1/2(9.8)t²
2.89 = 388t+4.9t²
Rearrange
4.9t²+388t-2.89 =0
Factorize
t = -388±√388²-4(4.9)(2.89)/2(4.9)
t= -388±√(388²-56.644)/9.8
t = -388±387.93/9.8
t =0.073/9.8
t = 0.00744 seconds
To solve this problem it is necessary to apply the concepts related to wavelength as a function of speed and frequency. In mathematical terms it can be expressed as

Where,
v = Velocity
f = Frequency
According to our values the frequency (f) is 320Hz and the speed (v) is 339m / s.
Replacing in the given equation we have to,

Therefore the wavelength of this sound wave is 1.06m
Hello,
Although you can see the pencil, it appears broken in the glass of water. This is because <span>electromagnetic waves travel at different speeds through different media.
Mark brainliest if helped!</span>
Answer:
1.5 N
Explanation:
You've left us to guess what the question is. I will Assume it is what's the force?
Givens
m = 3 kg
vi = 1.5 m/s
vf = 4 m/s
t = 5 seconds
Formula
F = m * (vf - vi)/t
Solution
F = 3 * (4 - 1.5) / 5
F = 1.5 N
Answer:
0.25 kg m^2
Explanation:
mass of each , m = 500 g = 0.5 kg
distance, r = 50 cm = 0.5 m
Moment of inertia about the axis passing through one corner and perpendicular to the plane of triangle
I = mr^2 + mr^2
I = 2 mr^2
I = 2 x 0.5 x 0.5 x 0.5
I = 0.25 kgm^2