Answer:
The new force will be \frac{1}{100} of the original force.
Explanation:
In the context of this problem, we're dealing with the law of gravitational attraction. The law states that the gravitational force between two object is directly proportional to the product of their masses and inversely proportional to the square of a distance between them.
That said, let's say that our equation for the initial force is:
![F = G\frac{m_1m_2}{R^2}The problem states that the distance decrease to 1/10 of the original distance, this means:[tex]R_2 = \frac{1}{10}R](https://tex.z-dn.net/?f=F%20%3D%20G%5Cfrac%7Bm_1m_2%7D%7BR%5E2%7D%3C%2Fp%3E%3Cp%3EThe%20problem%20states%20%20that%20%20the%20distance%20decrease%20to%201%2F10%20of%20the%20original%20distance%2C%20this%20means%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DR_2%20%3D%20%5Cfrac%7B1%7D%7B10%7DR)
And the force at this distance would be written in terms of the same equation:

Find the ratio between the final and the initial force:

Substitute the value for the final distance in terms of the initial distance:

Simplify:

This means the new force will be \frac{1}{100} of the original force.
Answer:
What r u trying to ask? you need to put more stuff in your question on here so we can answer it.
Explanation:
Answer:
a ) 1876.14 grams CaBr2
b ) 19.78 grams N2
sorry..i only have time to do the first two :)
Explanation:
Classification of the Elements. The next thing in our review is to classify the elements into three groups. These three groups are: metals, nonmetals, and inert gases. Let's look at where these groups are located on the periodic table and correlate them with the ability to lose and gain electrons.
Answer:
109° 27'
Explanation:
The ammonium ion is tetrahedral in shape, all the HNH bonds are exactly at the tetrahedral bond angle since there are only bond pairs in the structure and no lone pairs. Recall that lone pairs decrease the bond angke from the ideal value in a tetrahedron due to higher repulsion.