Answer:
1. The pressure will be 32 atm, twice the initial pressure.
2. The pressure will be 1.83 atm, one third of the initial pressure.
Explanation:
Boyle's law is one of the gas laws that relates the volume and pressure of a certain quantity of gas kept at a constant temperature.
This law says that "The volume occupied by a given gaseous mass at constant temperature is inversely proportional to pressure." This means that if the pressure increases, the volume decreases, while if the pressure decreases, the volume increases.
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
or P * V = k
Ahora es posible suponer que tienes un cierto volumen de gas V1 que se encuentra a una presión P1 al comienzo del experimento. Si varias el volumen de gas hasta un nuevo valor V2, entonces la presión cambiará a P2, y se cumplirá:
P1*V1=P2*V2
1. In this case:
- P1= 16 atm
- V1
- P2= ?
- V2= V1÷2=
because the volume is halved.
So:
16 atm*V1= P2* 
Solving:
=P2
16 atm*2= P2
32 atm= P2
<u><em>The pressure will be 32 atm, twice the initial pressure.</em></u>
2. Now
- P1= 5.5 atm
- V1
- P2= ?
- V2= V1*3 because the volume is tripled.
So:
5.5 atm*V1= P2* V1*3
Solving:
=P2
= P2
1.83 atm= P2
<u><em>The pressure will be 1.83 atm, one third of the initial pressure.</em></u>
metal salt acid hydroyon and why cuz I guessed and I haven't t learned this yet and I need points
<span>just find the percent mass of oxygen in sucrose again. and then multiply that by 50.00.</span>
Answer:
Option e.
Explanation:
Molarity is the concentration that indicates moles of solute in 1 L of solution.
We have another concentration, percent by mass.
Percent by mass indicates mass of solute in 100 g of solution.
Our solute is HNO₃, our solvent is water.
17.5 g of nitric acid is the mass of solute. We can convert them to moles:
17.5 g . 1mol / 63g = 0.278 moles
We do not have volume of solution. We assume the mass is 100 g because the percent by mass but we need density to state the volume.
Density = Mass / Volume
Mass / Density = Volume
Once we have the volume, we need to be sure the units is in L, to determine molarity
M = mol /L
Answer:
Explanation:
The reaction is given as:

The reaction quotient is:
![Q_C = \dfrac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=Q_C%20%3D%20%5Cdfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
From the given information:
TO find each entity in the reaction quotient, we have:
![[NH_3] = \dfrac{6.42 \times 10^{-4}}{3.5}\\ \\ NH_3 = 1.834 \times 10^{-4}](https://tex.z-dn.net/?f=%5BNH_3%5D%20%3D%20%5Cdfrac%7B6.42%20%5Ctimes%2010%5E%7B-4%7D%7D%7B3.5%7D%5C%5C%20%5C%5C%20NH_3%20%3D%201.834%20%5Ctimes%2010%5E%7B-4%7D)
![[N_2] = \dfrac{0.024 }{3.5}](https://tex.z-dn.net/?f=%5BN_2%5D%20%3D%20%5Cdfrac%7B0.024%20%7D%7B3.5%7D)
![[N_2] = 0.006857](https://tex.z-dn.net/?f=%5BN_2%5D%20%3D%200.006857)
![[H_2] =\dfrac{3.21 \times 10^{-2}}{3.5}](https://tex.z-dn.net/?f=%5BH_2%5D%20%3D%5Cdfrac%7B3.21%20%5Ctimes%2010%5E%7B-2%7D%7D%7B3.5%7D)
![[H_2] = 9.17 \times 10^{-3}](https://tex.z-dn.net/?f=%5BH_2%5D%20%3D%209.17%20%5Ctimes%2010%5E%7B-3%7D)
∴

However; given that:

By relating
, we will realize that 
The reaction is said that it is not at equilibrium and for it to be at equilibrium, then the reaction needs to proceed in the forward direction.