Answer:
- The resistance of the circuit is 1250 ohms
- The inductance of the circuit is 0.063 mH.
Explanation:
Given;
current at resonance, I = 0.2 mA
applied voltage, V = 250 mV
resonance frequency, f₀ = 100 kHz
capacitance of the circuit, C = 0.04 μF
At resonance, capacitive reactance (
) is equal to inductive reactance (
),
Where;
R is the resistance of the circuit, calculated as;

The inductive reactance is calculated as;

The inductance is calculated as;

Answer:
The answer is below
Explanation:
Let A represent the first switch, B represent the second switch and C represent the bulb. Also, let 0 mean turned off and 1 mean turned on. Since when both switches are in the same position, the light is off. This can be represented by the following truth table:
A B C (output)
0 0 0
0 1 1
1 0 1
1 1 0
The logic circuit can be represented by:
C = A'B + AB'
The output (bulb) is on if the switches are at different positions; if the switches are at the same position, the output (bulb) is off. This is an XOR gate. The gate is represented in the diagram attached below.
Answer:
2
Explanation:
my sister did this and its the answer
Answer:C 0.12 V
Explanation:
Given
Concentration of 
Concentration of 
Standard Potential for Ni and Fe are
and 


