Answer:
a) Please see attached copy below
b) 0.39KJ
c) 20.9‰
Explanation:
The three process of an air-standard cycle are described.
Assumptions
1. The air-standard assumptions are applicable.
2. Kinetic and potential energy negligible.
3. Air in an ideal gas with a constant specific heats.
Properties:
The properties of air are gotten from the steam table.
b) T₁=290K ⇒ u₁=206.91 kj/kg, h₁=290.16 kj/kg.
P₂V₂/T₂=P₁V₁/T₁⇒ T₂=P₂T₁/P₁ = 380/95(290K)= 1160K
T₃=T₂(P₃/P₂)⁽k₋1⁾/k =(1160K)(95/380)⁽⁰°⁴/₁.₄⁾ =780.6K
Qin=m(u₂₋u₁)=mCv(T₂-T₁)
=0.003kg×(0.718kj/kg.k)(1160-290)K= 1.87KJ
Qout=m(h₃₋h₁)=mCp(T₃₋T₁)
=0.003KG×(1.005kj/kg.k(780.6-290)K= 1.48KJ
Wnet, out= Qin-Qout = (1.87-1.48)KJ =0.39KJ
c)ηth= Wnet/W₍in₎ =0.39KJ/1.87KJ = 20.9‰
Row choice the cost of roadway improvements to the developer and functional the amount of trafficBeing generated by the theater as well as the Ralph’s ladies
Answer:
investment 10 years from now is $1,238,000
.
Explanation:
given data
sum = $500,000
rate = 12% =0.12
total time = 10 year
solution
as present value After 2 years from now is $500,000
so time period is now = 8 year ( 10 - 2 )
so we apply future value formula that is
Future value = present value ×
............1
put here value we get
Future value = $500,000 ×
Future value = $500,000 × 2.476
Future value = $1,238,000
so investment 10 years from now is $1,238,000
.
Answer:
Final mass of Argon= 2.46 kg
Explanation:
Initial mass of Argon gas ( M1 ) = 4 kg
P1 = 450 kPa
T1 = 30°C = 303 K
P2 = 200 kPa
k ( specific heat ratio of Argon ) = 1.667
assuming a reversible adiabatic process
<u>Calculate the value of the M2 </u>
Applying ideal gas equation ( PV = mRT )
P₁V / P₂V = m₁ RT₁ / m₂ RT₂
hence : m2 = P₂T₁ / P₁T₂ * m₁
= (200 * 303 ) / (450 * 219 ) * 4
= 2.46 kg
<em>Note: Calculation for T2 is attached below</em>