Answer:
heat transfer for the process is - 643.3 kJ
Explanation:
given data
mass m = 2 kg
pressure p1 = 500 kPa
temperature t1 = 400°C = 673.15 K
temperature t2 = 40°C = 313.15 K
pressure p2 = 300 kPa
to find out
heat transfer for the process
solution
we know here mass is constant so
m1 = m2
so by energy equation
m ( u2 - u1 ) = Q - W
Q is heat transfer
and in process P = A+ N that is linear spring
so
W = ∫PdV
= 0.5 ( P1+P2) ( V1 - V2)
so for case 1
P1V1 = mRT
put here value
500 V1 = 2 (0.18892) (673.15)
V1 = 0.5087 m³
and
for case 2
P2V2 = nRT
300 V2 = 2 (0.18892) (313.15)
V2 = 0.3944 m³
and
here W will be
W = 0.5 ( 500 + 300 ) ( 0.3944 - 0.5087 )
W = -45.72 kJ
and
Q is here for Cv = 0.83 from ideal gas table
Q = mCv ( T2-T1 ) + W
Q = 2 × 0.83 ( 40 - 400 ) - 45.72
Q = - 643.3 kJ
heat transfer for the process is - 643.3 kJ
Answer:
False.
Explanation:
False. The pressure is above pressure at critical point (22.064 MPa.), the limit where pressure can prevent boiling.
That means “ if possible then link”
Answer:
8 to 10 times
Explanation:
For dry road
u= 15 mph ( 1 mph = 0.44 m/s)
u= 6.7 m/s
Let take coefficient of friction( μ) of dry road is 0.7
So the de acceleration a = μ g
a= 0.7 x 10 m/s ² ( g=10 m/s ²)
a= 7 m/s ²
We know that
v= u - a t
Final speed ,v=0
0 = 6.7 - 7 x t
t= 0.95 s
For snow road
μ = 0.4
de acceleration a = μ g
a = 0.4 x 10 = 4 m/s ²
u= 30 mph= 13.41 m/s
v= u - a t
Final speed ,v=0
0 = 30 - 4 x t'
t'=7.5 s
t'=7.8 t
We can say that it will take 8 to 10 times more time as compare to dry road for stopping the vehicle.
8 to 10 times
B is the answer I believe so