Answer:
D. Both pull-in and hold-in windings are energized.
Explanation:
The instant the ignition switch is turned to the start position, "Both pull-in and hold-in windings are energized." This is because the moment the ignition switch is turned to the start position, voltage passes through to the S terminal of the solenoid.
The hold-in winding is attached to the case of the solenoid. Similarly, the pull-in winding is also attached to the starter motor. Thereby, the current will move across both windings by getting energized to generate a strong magnetic field.
Answer:
hello your question lacks some information attached below is the complete question with the required information
answer : 81.63 mm
Explanation:
settlement of the surface due to compression of the clay ( new consolidated )
= 81.63 mm
attached below is a detailed solution to the given problem
Answer:
Use a resume header
Explanation:
Create a Summary
Research industry, employer keywords
there are some hints okay
Answer:
Explanation:
There are three points in time we need to consider. At point 0, the mango begins to fall from the tree. At point 1, the mango reaches the top of the window. At point 2, the mango reaches the bottom of the window.
We are given the following information:
y₁ = 3 m
y₂ = 3 m − 2.4 m = 0.6 m
t₂ − t₁ = 0.4 s
a = -9.8 m/s²
t₀ = 0 s
v₀ = 0 m/s
We need to find y₀.
Use a constant acceleration equation:
y = y₀ + v₀ t + ½ at²
Evaluated at point 1:
3 = y₀ + (0) t₁ + ½ (-9.8) t₁²
3 = y₀ − 4.9 t₁²
Evaluated at point 2:
0.6 = y₀ + (0) t₂ + ½ (-9.8) t₂²
0.6 = y₀ − 4.9 t₂²
Solve for y₀ in the first equation and substitute into the second:
y₀ = 3 + 4.9 t₁²
0.6 = (3 + 4.9 t₁²) − 4.9 t₂²
0 = 2.4 + 4.9 (t₁² − t₂²)
We know t₂ = t₁ + 0.4:
0 = 2.4 + 4.9 (t₁² − (t₁ + 0.4)²)
0 = 2.4 + 4.9 (t₁² − (t₁² + 0.8 t₁ + 0.16))
0 = 2.4 + 4.9 (t₁² − t₁² − 0.8 t₁ − 0.16)
0 = 2.4 + 4.9 (-0.8 t₁ − 0.16)
0 = 2.4 − 3.92 t₁ − 0.784
0 = 1.616 − 3.92 t₁
t₁ = 0.412
Now we can plug this into the original equation and find y₀:
3 = y₀ − 4.9 t₁²
3 = y₀ − 4.9 (0.412)²
3 = y₀ − 0.83
y₀ = 3.83
Rounded to two significant figures, the height of the tree is 3.8 meters.