Answer:
The angle of twist can be computed using the material’s shear modulus if and only if the shear stress is still in the elastic region
Explanation:
The shear modulus (G) is the ratio of shear stress to shear strain. Like the modulus of elasticity, the shear modulus is governed by Hooke’s Law: the relationship between shear stress and shear strain is proportional up to the proportional limit of the material. The angle of twist can be computed using the material’s shear modulus if and only if the shear stress is still in the elastic region.
Answer:
Both Technician A and B are correct.
Explanation: A brake lathe is a special tool used to improve or work on the surface of brake pads it helps to smoothen the surface.
Brake lathe has been found to be very effective in removing rusts in rotors and unevenness in the brake pad surfaces in order to ensure the efficiency and effectiveness of the brake system of a vehicle. Hence, a brake lathe helps to make brake rotor surface as smooth as possible.
Answer:
/* C Program to rotate matrix by 90 degrees */
#include<stdio.h>
int main()
{
int matrix[100][100];
int m,n,i,j;
printf("Enter row and columns of matrix: ");
scanf("%d%d",&m,&n);
/* Enter m*n array elements */
printf("Enter matrix elements: \n");
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
scanf("%d",&matrix[i][j]);
}
}
/* matrix after the 90 degrees rotation */
printf("Matrix after 90 degrees roration \n");
for(i=0;i<n;i++)
{
for(j=m-1;j>=0;j--)
{
printf("%d ",matrix[j][i]);
}
printf("\n");
}
return 0;
}
Answer:
maximum isolator stiffness k =1764 kN-m
Explanation:
mean speed of rotation 


=65.44 rad/sec


= 0.1*(65.44)^2
F_T =428.36 N
Transmission ratio 
also
transmission ratio ![= \frac{1}{[\frac{w}{w_n}]^{2} -1}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B%5B%5Cfrac%7Bw%7D%7Bw_n%7D%5D%5E%7B2%7D%20-1%7D)
![0.7 =\frac{1}{[\frac{65.44}{w_n}]^2 -1}](https://tex.z-dn.net/?f=0.7%20%3D%5Cfrac%7B1%7D%7B%5B%5Cfrac%7B65.44%7D%7Bw_n%7D%5D%5E2%20-1%7D)
SOLVING FOR Wn
Wn = 42 rad/sec

k = m*W^2_n
k = 1000*42^2 = 1764 kN-m
k =1764 kN-m