6(8)+b/6
48+b/6
b/6=-48
b=-48/6
b=-288
Answer:
The value of (f/g) (8) = -169
Step-by-step explanation:
<u>Step 1: explaining the question</u>
The quotient (f/g) is not defined at values of x ⇒ both the functions must be defined at a point for the combination to be defined.
⇒(f/g)(x) =(f(x)) / (g(x))
If f(x)= 3-2 and g(x)=1/x+5
⇒then according to the preceding formula: (f/g)(x) =(f(x)) / (g(x))
⇒(f/g)(8) = f(8) / g(8)
to solve this we have to find the value of both f(8) and g(8)
<u>Step 2: find value of f(8) and g(8)</u>
⇒ we know that f(x) = 3-2x and we know dat f(x) = f(8)
⇒ f(8) = 3-2(8)
f(8) = 3-16 = -13
⇒we know that g(x) = 1/x+5 and g(x) = g(8)
⇒ g(8) = 1/8+5
g(8) =1/13
These 2 equations we will insert in the following : ⇒(f/g)(8) = f(8) / g(8)
⇒ f/g (8) = -13 / (1/13) = -13 * 13/1 = -169
The value of (f/g) (8) = -169
Answer:
3ft * 8ft
Step-by-step explanation:
The base of the pyramid is the rectangle, and the rectangle has the dimensions of 3ft * 8ft.
A) y = 2x – 7 and f(x) = 7 – 2xIncorrect. These equations look similar but are not the same. The first has a slope of 2 and a y-intercept of −7. The second function has a slope of −2 and a y-intercept of 7. It slopes in the opposite direction. They do not produce the same graph, so they are not the same function. The correct answer is f(x) = 3x2 + 5 and y = 3x2 + 5. B) 3x = y – 2 and f(x) = 3x – 2Incorrect. These equations represent two different functions. If you rewrite the first equation in terms of y, you’ll find the equation of the function is y = 3x + 2. The correct answer is f(x) = 3x2 + 5 and y = 3x2 + 5. C) f(x) = 3x2 + 5 and y = 3x2 + 5Correct. The expressions that follow f(x) = and y = are the same, so these are two different ways to write the same function: f(x) = 3x2 + 5 and y = 3x2 + 5. D) None of the aboveIncorrect. Look at the expressions that follow f(x) = and y =. If the expressions are the same, then the equations represent the same exact function. The correct answer is f(x) = 3x2 + 5 and y = 3x2 + 5.
Surface area of the the rectangles:
8 * 5 + 8 * 4 + 8 * 3 = 96
Surface area of the two triangles:
Use bh/2 base time height over 2
(4 * 3)/2 = 6
There are 2 triangles, 2 * 6 = 12
12 + 96 = 108