Answer:
Electrolytes are substances that can ionize in water. They could be acids, bases or salts as long as they give ions when they dissolve in water.
Explanation:
- <em>Strong electrolytes</em> completely ionize when dissolved in water, leaving no neutral molecules. The strong electrolytes here are:<u> salt water</u>, <u>baking soda (NaHCO3) solution.</u>
- <em>Weak electrolytes</em> do not completely dissociate in solution, and hence have a low ionic yield. Examples of this would be<u> vinegar </u>and <u>bleach </u>(which could be sodium hypochlorite or chlorine, which are weakly dissociated).
- <em>Non-electrolytes </em>will remain as molecules and are not ionized in water at all. In this case, <u>sugar solution is a non-electrolytes</u>, even though sugar dissolves in water, but it remains as a whole molecule and not ions.
Answer:
No
Explanation:
The same amount of matter is present before and after chemical and physical changes. Matter cannot be created or destroyed
Answer:
<span>Formula New Combination Predicted Formula
</span>
NaCl potassium + chlorine KCl
AlCl₃ aluminum + fluorine AlF₃
CO₂ tin + oxygen SnO₂
MgCl₂ calcium + bromine CaBr₂
HCl cesium + iodine CsI
<span>
CCl₄ silicon + bromine SiBr₄</span>
Explanation:
1) The question is incomplete. The first part is missing.
This is the first part of the question.
<span>Applying
the principle that the elements of a particular column in the Periodic
Table share the same chemical properties, complete the following chart.
The first one has been done for you.
</span>
2) This is the given chart:
<span>Formula New Combination Predicted Formula
</span>
Cu₂O silver + oxygen Ag₂O ← this is the example.
NaCl potassium + chlorine
<span>
AlCl₃ aluminum + fluorine </span>
CO₂ tin + oxygen
<span>
MgCl₂ calcium + bromine </span>
<span>
HCl cesium + iodine </span>
<span>
CCl₄ silicon + bromine
</span>
3) This is how you find the new formula to complete the chart.
i) NaCl potassium + chlorine
Since potassium is in the same group of sodium, you predict that in the new formula Na is replaced by K giving KCl.
ii) AlCl₃ aluminum + fluorine
Since fluorine is in the same group that Al, then you predict that in the new formula Cl is replaced by F leading to AlF₃
iii) CO₂ tin + oxygen
Since tin is in the same group that C, you predict that in the new formula C is replaced by Sn leading to SnO₂
iv) MgCl₂ calcium + bromine
Since calcium is in the same group that Mg, and bromine is in the same group that Cl, you predict thea in the new formula calcium replaces Mg and bromine replaces Cl, leading to CaBr₂
v) HCl cesium + iodine
Since H is in the same column that cesium and Cl is in the same colum that iodine, you predict that in the new formula Cs replaces H and I replaces Cl leading to: CsI
<span>
vi) CCl₄ silicon + bromine
</span>
Since silicon is in the same column that C and bromine is in the same column that Cl, you predict that in the new formula Si replaces C and Br replaces Cl, leading to SiBr₄
Answer:
RbI<RbBr<RbCl<RbF
Explanation:
As stated in the question, the latice energy depends on the relative size of the ions. When the action size is constant as in the question, the lattice energy now depends on the relative of the anions. The order of increase in ionic sizes among the halide ions is fluoride<Chloride<Bromide<Iodide. This order of increasing size means that the lattice energy will decrease accordingly as shown in the answer.
2NaBr + Ca(OH)2 ➡️ CaBr2 + 2NaOH