Answer:
Carbon Cycle
Steps of the Carbon Cycle
- CO2 is removed from the atmosphere by photosynthetic organisms (plants, cyanobacteria, etc.) and used to generate organic molecules and build biological mass.
- Animals consume the photosynthetic organisms and acquire the carbon stored within the producers.
- CO2 is returned to the atmosphere via respiration in all living organisms.
- Decomposers break down dead and decaying organic matter and release CO2.
- Some CO2 is returned to the atmosphere via the burning of organic matter (forest fires).
- CO2 trapped in rock or fossil fuels can be returned to the atmosphere via erosion, volcanic eruptions, or fossil fuel combustion.
Nitrogen Cycle
Steps of the Nitrogen Cycle
- Atmospheric nitrogen (N2) is converted to ammonia (NH3) by nitrogen-fixing bacteria in aquatic and soil environments. These organisms use nitrogen to synthesize the biological molecules they need to survive.
- NH3 is subsequently converted to nitrite and nitrate by bacteria known as nitrifying bacteria.
- Plants obtain nitrogen from the soil by absorbing ammonium (NH4-) and nitrate through their roots. Nitrate and ammonium are used to produce organic compounds.
- Nitrogen in its organic form is obtained by animals when they consume plants or animals.
- Decomposers return NH3 to the soil by decomposing solid waste and dead or decaying matter.
- Nitrifying bacteria convert NH3 to nitrite and nitrate.
- Denitrifying bacteria convert nitrite and nitrate to N2, releasing N2 back into the atmosphere.
Oxygen Cycle
Oxygen is an element that is essential to biological organisms. The vast majority of atmospheric oxygen (O2) is derived from photosynthesis. Plants and other photosynthetic organisms use CO2, water, and light energy to produce glucose and O2. Glucose is used to synthesize organic molecules, while O2 is released into the atmosphere. Oxygen is removed from the atmosphere through decomposition processes and respiration in living organisms.
Explanation:
Answer:
Mass = 208.26 g
Explanation:
Given data:
Volume of water = 40.0 mL
Volume of water + copper = 63.4 mL
Volume of copper = ?
Density of copper = 8.9 g/cm³
Mass of copper = ?
Solution:
Volume of copper:
Volume of copper = (Volume of water + copper ) - Volume of water
Volume of copper = 63.4 mL - 40.0 mL
Volume of copper = 23.4 mL
Mass of copper:
density = mass/volume
8.9 g/cm³ = mass/23.4 mL
cm³ = mL
Mass = 8.9 g/mL × 23.4 mL
Mass = 208.26 g
Answer:
Potassium
General Formulas and Concepts:
<u>Chem</u>
- Reading a Periodic Table
- Periodic Trends
- Ionization Energy - energy required to remove an electron from a given element
- Coulomb's Law
- Shielding Effect
- Z-effective and Forces of Attraction
Explanation:
The Periodic Trend for 1st Ionization Energy is increasing up and to the right. That means He would have the highest I.E and therefore take the most amount of energy to remove an electron.
Potassium and Gallium are both in Period 4. Potassium is element 19 and Gallium is element 31.
Potassium's electron configuration is [Ne] 4s¹ and Gallium's electron configurations is [Ne] 4s²3d¹⁰4p¹. Since both are in Period 4, they have the same number of core e⁻. Therefore, the shielding effect is the same.
However, since Gallium is element 31, it has 31 protons compared to Potassium, which is element 19 and has 19 protons. Gallium would have a greater Zeff than Potassium as it has more protons. Therefore, the FOA between the electrons and nucleus of Ga is much stronger than that of K. Thus, Ga requires <em>more</em> energy to overcome those FOA to remove the 4p¹ e⁻. Since K has less protons, it will have a smaller Zeff and thus less FOA between the e⁻ and nucleus, requiring <em>less</em> energy to remove the 4s¹ e⁻.
Answer:
2KClO3--------->2KCl + 3O2
Answer:
B
Explanation:
Heat moves as thermal energy from hot body to a cold body
don't forget to rate answer