Answer:
146 g
Explanation:
Step 1. Calculate the <em>molar mass</em> of NaNO₃
Na = 22.99
N = 14.01
3O = 3 × 16.00 = 48.00
Total = 85.00 g/mol
Step 2. Calculate the <em>mass</em> of NaNO₃
Mass of NaNO₃ = 1.72 × 85.00/1
Mass of NaNO₃ = 146 g
Answer:
The density of Lithium β is 0.5798 g/cm³
Explanation:
For a face centered cubic (FCC) structure, there are total number of 4 atoms in the unit cell.
we need to calculate the mass of these atoms because density is mass per unit volume.
Atomic mass of Lithium is 6.94 g/mol
Then we calculate the mass of four atoms;

⇒next, we estimate the volume of the unit cell in cubic centimeter
given the edge length or lattice constant a = 0.43nm
a = 0.43nm = 0.43 X 10⁻⁹ m = 0.43 X 10⁻⁹ X 10² cm = 4.3 X 10⁻⁸cm
Volume of the unit cell = a³ = (4.3 X 10⁻⁸cm)³ = 7.9507 X 10⁻²³ cm³
⇒Finally, we calculate the density of Lithium β
Density = mass/volume
Density = (4.6097 X 10⁻²³ g)/(7.9507 X 10⁻²³ cm³)
Density = 0.5798 g/cm³
There is 213 units i believe hope so
Explanation:
It can be compromise increasing the threat of a meltdown
Answer:
108.6 g
Explanation:
- 2NaN₃(s) → 2Na(s) + 3N₂(g)
First we use the <em>PV=nRT formula</em> to <u>calculate the number of nitrogen moles</u>:
- R = 0.082 atm·L·mol⁻¹·K⁻¹
- T = 0 °C ⇒ 0 + 273.2 = 273.2 K
<u>Inputting the data</u>:
- 1.00 atm * 56.0 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 273.2 K
Then we <u>convert 2.5 moles of N₂ into moles of NaN₃</u>, using the <em>stoichiometric coefficients of the balanced reaction</em>:
- 2.5 mol N₂ *
= 1.67 mol NaN₃
Finally we <u>convert 1.67 moles of NaN₃ into grams</u>, using its <em>molar mass</em>:
- 1.67 mol * 65 g/mol = 108.6 g