Answer:
The candle has a radius of 8 centimeters and 16 centimeters and uses an amount of approximately 1206.372 square centimeters.
Step-by-step explanation:
The volume (
), in cubic centimeters, and surface area (
), in square centimeters, formulas for the candle are described below:
(1)
(2)
Where:
- Radius, in centimeters.
- Height, in centimeters.
By (1) we have an expression of the height in terms of the volume and the radius of the candle:

By substitution in (2) we get the following formula:


Then, we derive the formulas for the First and Second Derivative Tests:
First Derivative Test



![r = \sqrt[3]{\frac{V}{2\pi} }](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%20%7D)
There is just one result, since volume is a positive variable.
Second Derivative Test

If
:

(which means that the critical value leads to a minimum)
If we know that
, then the dimensions for the minimum amount of plastic are:
![r = \sqrt[3]{\frac{V}{2\pi} }](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7BV%7D%7B2%5Cpi%7D%20%7D)
![r = \sqrt[3]{\frac{3217\,cm^{3}}{2\pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3217%5C%2Ccm%5E%7B3%7D%7D%7B2%5Cpi%7D%7D)




And the amount of plastic needed to cover the outside of the candle for packaging is:



The candle has a radius of 8 centimeters and 16 centimeters and uses an amount of approximately 1206.372 square centimeters.
−<span>3<span>(<span><span>4a</span>−<span>5b</span></span>)</span></span><span>=<span><span>(<span>−3</span>)</span><span>(<span><span>4a</span>+<span>−<span>5b</span></span></span>)</span></span></span><span>=<span><span><span>(<span>−3</span>)</span><span>(<span>4a</span>)</span></span>+<span><span>(<span>−3</span>)</span><span>(<span>−<span>5b</span></span>)</span></span></span></span><span>=<span><span>−<span>12a</span></span>+<span>15<span>b</span></span></span></span>
50% chance they will land on the same number and there’s also a 50% chance they won’t.
Wouldnt it be 7 bc 7*6 is 42
9514 1404 393
Answer:
h ≤ 6 2/3
Step-by-step explanation:
The inequality is presumed to be ...
15h +40 ≤ 140
15h ≤ 100
h ≤ 6 2/3
__
The graph shows h ≥ 0, because the inequality is only reasonable for h ≥ 0.