Step one calculate the moles of each element
that is moles= % composition/molar mass
molar mass of Ca = 40g/mol, S= 32 g/mol , O= 16 g/mol
moles of Ca = 29.4 /40g/mol=0.735 moles, S= 23.5/32 =0.734 moles, O= 47.1/16= 2.94 moles
calculate the mole ratio by dividing each mole with smallest mole that is 0.734
Ca= 0.735/0.734= 1, S= 0.734/0.734 =1, O = 2.94/ 0.734= 4
therefore the emipical formula = CaSO4
The molar mass for PCL3 is 137.33 g/mol
I hope this picture helps
The given statement, some type of path is necessary to join both half-cells in order for electron flow to occur, is true.
Explanation:
Flow of electrons is possible with the help of a conducting medium like metal wire.
A laboratory device which helps in completion of oxidation and reduction-half reactions of a galvanic or voltaic cell is known as salt bridge. Basically, this salt bridge helps in the flow of electrons from anode to cathode and vice-versa.
If salt bridge is not present in an electrochemical cell, the electron neutrality will not be maintained and hence, flow of electrons will not take place.
Thus, we can conclude that the statement some type of path is necessary to join both half-cells in order for electron flow to occur, is true.
Answer:
1.2* 10³ rNe.
Explanation:
Given speed of neon=350 m/s
Un-certainity in speed= (0.01/100) *350 =0.035 m/s
As per heisenberg uncertainity principle
Δx*mΔv ≥\frac{h}{4\pi }
4π
h
..................(1)
mass of neon atom =\frac{20*10^{-3} }{6.22*10^{-23} } =3.35*10^{-26} kg
6.22∗10
−23
20∗10
−3
=3.35∗10
−26
kg
substituating the values in eq. (1)
Δx =4.49*10^{-8}10
−8
m
In terms of rNe i.e 38 pm= 38*10^{-12}10
−12
Δx=\frac{4.49*10^{-8} }{38*10^{-12} }
38∗10
−12
4.49∗10
−8
=0.118*10^{4}10
4
* (rNe)
=1.18*10³ rN
= 1.2* 10³ rNe.
Explanation:
This is the answer