THE KINETIC MOLECULAR THEORY STATES THAT ALL PARTICLES OF AN IDEAL GAS ARE IN CONSTANT MOTION AND EXHIBITS PERFECT ELASTIC COLLISIONS.
Explanation:
An ideal gas is an imaginary gas whose behavior perfectly fits all the assumptions of the kinetic-molecular theory. In reality, gases are not ideal, but are very close to being so under most everyday conditions.
The kinetic-molecular theory as it applies to gases has five basic assumptions.
- Gases consist of very large numbers of tiny spherical particles that are far apart from one another compared to their size.
- Gas particles are in constant rapid motion in random directions.
- Collisions between gas particles and between particles and the container walls are elastic collisions.
- The average kinetic energy of gas particles is dependent upon the temperature of the gas.
- There are no forces of attraction or repulsion between gas particles.
Answer:
The particles of fluids are constantly moving in all directions at random. As the particles move, they keep bumping into each other and into anything else in their path. These collisions cause pressure, and the pressure is exerted equally in all directions.
Answer:
6 moles of Cl2
Explanation:
First, the equation has to be balanced, which makes it 4 FeCl3 + 3 O2 --> 2 Fe2O3 + 6 Cl2
Using this information, we can see that one mole of O2 will not be present in the reaction. Since four moles of FeCl3 are needed to react in the equation, which would produce six moles of Cl2, and only four moles of FeCl3 are present, six moles of Cl2 would be produced.
<u>Answer:</u>
<u>When an alkyl benzene is heated with strong oxidizing asgents like acidic or alkline KMnO4</u>
<u> or acidified K2Cr2O7</u>
<u>, etc. gives aromatic carboxyllic acid. The alkyl side chain gets oxidised to −COOH</u>
<u> group irrespective of the size of the chain.</u>
Explanation: