E. co and n2Effusion is the process where gas escapes through a hole. Gases with a lower molecular mass effuse more speedy than gases with a higher molecular mass. R<span>elative rates of effusion is related to the molecular mass.
a) M(N</span>₂)/M(O₂) = 28/32 = 0,875
b) M(N₂O)/M(NO₂) = 44/46 = 0,956
c) M(CO)/M(CO₂) = 28/44 = 0,636
d) M(NO₂)/M(N₂O₂) = 44/58= 0,758
e) M(CO)/M(N₂) = 28/28 = 1, <span>CO and N</span>₂ <span>have iexact molecular masses and will effuse at nearly identical rates.</span>
Answer:
Kp = (Partial pressure H₂O) . (Partial Pressure Cl₂)² / Partial pressure O₂ . (Partial Pressure HCl)⁴
Explanation:
This is the reaction:
4 HCl (g) + O₂ (g) ⇒ 2 Cl₂ (g) + 2 H₂O(g)
Kp = (Partial pressure H₂O) . (Partial Pressure Cl₂)² / Partial pressure O₂ . (Partial Pressure HCl)⁴
In a flame photometric analysis, salt solution is first vaporized using the heat of flame, followed by this electrons from valance shell gets excited from ground state to excited state. Followed by this de-excitation of electron bring backs electrons to ground state. This process is accompanied by emission of photon. The photon emitted is characteristic of an element, and number of photons emitted can be used for quantitative analysis.
<span>Following are the investigative question that you can answer by doing this experiment.
</span>1) What information can be obtained from the colour of flame?
2) <span>State the relationship between wavelength, frequency, and energy?
</span><span>3) Can you identify the metal present in unknown sample provided?
4) How will you identify amount of metal present in sample solution?
5) </span><span>Why do different chemicals emit light of different colour?</span><span>
</span>
Answer: A
1.68 N
Explanation:
F = ma = 0.024(70.0) = 1.68 N
Answer:
C
Explanation:
I picked C because the plant is interacting with the sun which is a nonliving part of the environment.
A, B and D are wrong because seaweed, horses, and trees are living things.