Answer:
a = 9.849
b = 20.25
c = 491.03
Step-by-step explanation:
By using Pythagoras theorem in the right triangle BDC,
(Hypotenuse)² = (Leg 1)² + (Leg 2)²
BC² = BD² + DC²
a² = 9² + 4²
a = 
a = 
a = 9.8489
a ≈ 9.849 units
By mean proportional theorem,

AD × DC = BD²
b × 4 = 9²
b = 
b = 20.25 units
BY Pythagoras theorem in ΔADB,
AB² = AD² + BD²
c² = b² + 9²
c² = (20.25)² + 9²
c² = 410.0625 + 81
c = 491.0625
c = 491. 063 units
Answer:
Ashley uses internal citation to give credit for someone else's idea
Answer:
<u />
General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]:

Special Limit Rule [L’Hopital’s Rule]:

Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given limit</em>.

<u>Step 2: Find Limit</u>
Let's start out by <em>directly</em> evaluating the limit:
- [Limit] Apply Limit Rule [Variable Direct Substitution]:

- Evaluate:

When we do evaluate the limit directly, we end up with an indeterminant form. We can now use L' Hopital's Rule to simply the limit:
- [Limit] Apply Limit Rule [L' Hopital's Rule]:

- [Limit] Differentiate [Derivative Rules and Properties]:

- [Limit] Apply Limit Rule [Variable Direct Substitution]:

- Evaluate:

∴ we have <em>evaluated</em> the given limit.
___
Learn more about limits: brainly.com/question/27807253
Learn more about Calculus: brainly.com/question/27805589
___
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Answer:
Okay I believe it would be c
Step-by-step explanation:
If I'm wrong I'm really sorry...