Answer:
3234.2 W
Explanation:
Since intensity I = Power/Area. The intensity of the light from the sun, I = power radiated by sun/area of sphere of radius, r = 1.5 × 10¹¹ m.
So, I = 3.9 10²⁶W/4π(1.5 × 10¹¹ m)² = 2.069 × 10³ W/m².
Now, the power radiated on the patch of area 0.570 m² at the equator is
P = Icos27/A = 2.069 × 10³ W/m² cos27/0.570 m² = 1843.49/0.570 = 3234.2 W
Answer:
α = -π/3 rad/s²
θ = 1.5π rad ≈ 4.71 rad
θ = 0.75 rev
Explanation:
30 rev/min (2π rad/rev) / (60 s/min) = π rad/s
α = (ωf - ωi) / t = (0 - π) / 3 = -π/3 rad/s²
θ = ½αt² = ½(π/3)3² = 1.5π rad ≈ 4.71 rad
θ = 1.5π rad / 2π rad/rev = 0.75 rev
Answer:
When you jump down, your kinetic is converted to potential energy of the stretched trampoline. The trampoline's potential energy is converted into kinetic energy, which is transferred to you, making you bounce up. At the top of your jump, all your kinetic energy has been converted into potential energy. Right before you hit the trampoline, all of your potential energy has been converted back into kinetic energy. As you jump up and down your kinetic energy increases and decrease.
In normal fission reactors, the fuel used to start the nuclear fission is Uranium-235.
Generally, fuel rods enriched with uranium-235 are used to start the fission. When a nucleus of uranium-235 absorbs a neutron, it becomes unstable and then it breaks apart, producing two smaller nuclei, several neutrons and energy. The additional neutrons produced in the reaction are then absorbed by other nuclei of uranium-235, triggering other fission reactions, and so on.
Answer:
The number of atoms are
.
Explanation:
Given that,
Diameter 

Distance = 2.60 cm
We calculate the number of atoms
Using formula of numbers of atoms


Hence, The number of atoms are
.