1) Length of the wire.
2) Thickness of the wire.
3) Temperature.
4) Type of metal.
Hope this helps!
-Payshence
Well the trivial answer is zero, since there is indeed a "zero vector". Assuming you aren't allowed to use the zero vector you would need at least two. They would be antiparallel and of equal magnitude. (That is be pointing in opposite directions and have the same length)
Answer:
a) 0.138J
b) 3.58m/S
c) (1.52J)(I)
Explanation:
a) to find the increase in the translational kinetic energy you can use the relation

where Wp is the work done by the person and Wg is the work done by the gravitational force
By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

the change in the translational kinetic energy is 0.138J
b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

the new speed is 3.58m/s
c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

hence, the change in Er is about 1.52J times the initial rotational energy
Answer:
x = 76.5 m
Explanation:
Let's use Newton's second law at the point of contact between the wheel and the floor.
fr = m a
fr = miy N
N-W = 0
N = W
μ mg = m a
a = miu g
a = 0.600 9.8
a = 5.88 m / s²
Having the acceleration we can use the kinematic relationships to find the distance
² = v₀² + 2 a x
= 0
x = -v₀² / 2 a
Acceleration opposes the movement by which negative
x = - 30²/2 (-5.88)
x = 76.5 m
Answer:
ocean covers 71 percent of the earth