Answer:
B
Explanation:
ifhwndidbsnsdijwjsidbebejdidid
Answer:
Listed below
Explanation:
Analytical chemistry: using quality and quantity observations to identify and measure physical and chemical properties of substances.EXAMPLE: medical diagnosis
Physical chemistry: Combination of physics and chemistry. EXAMPLE:nitric acid eating through wood.
Organic chemistry: Studying of compounds containing carbon in them. EXAMPLE: there are different products that make use of this type of chemistry for example perfumes,gasoline and many more.
Inorganic chemistry: Studies materials without carbon i them. EXAMPLE: Metals AND Gases.
Biochemistry: studies chemical processes occurring in living organisms. EXAMPLE: Human bodies and muscles
Theoretical chemistry: provides explanations to chemical and physical observation. EXAMPLE: Concepts of chemical reactions
HOPE IT HELPED
<span>C2Br2
First, we need to determine how many moles of the gas we have. For that, we'll use the Ideal Gas Law which is
PV = nRT
where
P = pressure (1.10 atm = 111458 Pa)
V = volume (10.0 ml = 0.0000100 m^3)
n = number of moles
R = Ideal gas constant (8.3144598 (m^3 Pa)/(K mol) )
T = Absolute temperature
Solving for n, we get
PV/(RT) = n
Now substituting our known values into the formula.
(111458 Pa * 0.0000100 m^3) / (288.5 K * 8.3144598 (m^3 Pa)/(K mol))
= (1.11458/2398.721652) mol
= 0.000464656 mol
Now let's calculate the empirical formula for this compound.
Atomic weight carbon = 12.0107
Atomic weight bromine = 79.904
Relative moles carbon = 13.068 / 12.0107 = 1.08802984
Relative moles bromine = 86.932 / 79.904 = 1.087955547
So the relative number of atoms of the two elements is
1.08802984 : 1.087955547
After dividing all numbers by the smallest, the ratio becomes
1.000068287 : 1
Which is close enough to 1:1 for me to consider the empirical formula to be CBr
Now calculate the molar mass of CBr
12.0107 + 79.904 = 91.9147
Finally, let's determine if the compound is actually CBr, or something like C2Br2, or some other multiple. Using the molar mass of CBr, multiply by the number of moles and see if the result matches the mass of the gas. So
91.9147 g/mol * 0.000464656 mol = 0.042708701 g
0.0427087 g is a lot smaller than 0.08541 g. So the compound isn't exactly CBr. Let's divide them to see what the factor is.
0.08541 / 0.0427087 = 1.99982673
1.99982673 is close enough to 2 to within the number of significant digits we have for me to claim that the formula for the unknown gas isn't CBr, but instead is C2Br2.</span>
Answer:
4
Explanation:
1 is correct
Liquids have no definite shape as they take up the shape of the container. Thus, we can say a liquid has no shape of its own but rather has the shape of the container in which it is filled.
2 is correct
When the atmospheric temperature is increased, it also will increase the boiling point of the liquid
3 is correct
This is an extension of the statement 2. While we decrease the atmospheric pressure, we are also decreasing the boiling point
4 is incorrect
A liquid have a definite volume. When we say a volume is definite, it means the volume is fixed and does not change. The volume of liquids is definite for a particular mass of the liquid and does not change