Answer:
142.82 g
Explanation:
The following data were obtained from the question:
Volume of water = 12 mL
Volume of water + gold = 19.4 mL
Density of gol= 19.3 g/cm³
Mass of gold =.?
Next, we shall determine the volume of the gold. This can be obtained as follow:
Volume of water = 12 mL
Volume of water + gold = 19.4 mL
Volume of gold =.?
Volume of gold = (Volume of water + gold) – (Volume of water)
Volume of gold = 19.4 – 12
Volume of gold = 7.4 mL
Finally, we shall determine the mass of the gold as follow:
Note: 1 mL is equivalent to 1 cm³
Volume of gold = 7.4 mL
Density of gol= 19.3 g/cm³ = 19.3 g/mL
Mass of gold =?
Density = mass /volume
19.3 = mass of gold /7.4
Cross multiply
Mass of gold = 19.3 × 7.4
Mass of gold = 142.82 g
Therefore, the mass of the gold pebble is 142.82 g
A. high potential energy and zero kinetic energy.
Answer:
Data is not valid
Explanation:
When two liquids having different temperatures are mixed, regardless of the volumes, the final mix temperature will ALWAYS be between the initial temperature values.
1st Law Thermo => Law of Conservation of Energy => Energy can not be created nor destroyed, only changed in form. Mixing 22°C with 75°C will NOT result in a mix having a final temperature of 80°C.
∑ΔE = 0 => (mcΔT)₁ + (mcΔT)₂ = 0
[(20g)(1cal/g·°C)(Tₓ - 22°C)] + [(80g)(1cal/g·°C)(Tₓ - 75°C)] = 0
=> 20(Tₓ - 22) + 80(Tₓ - 75) = 0
=> 20Tₓ - 440 + 80Tₓ - 75 = 0
=> 100Tₓ = 440 + 75 = 515
=> Tₓ = (515/100)°C = 51.5°C final mix temperature
Idk bro i havent learned that yet