A common misconception in statistics is confusing correlation with causation. If two events are correlated, it merely means that they share the same behaviour over time, but it doesn't imply in any way that those event are related by a common cause, or even worse, that one implies the other.
You can find several (even humorous) counter examples online. For example, if you plot the number of reported pirates assault against the global temperature in the last years, you'll se that temperature is rising (unfortunately...) while pirates are almost disappearing.
One could observe this strong negative correlation and claim that hotter climate has solved the pirate issue. Of course this is a joke, but it explains why you shouldn't confuse correlation with causation.
U're goal is to get k alone.
So divide both sides by 9/10.
3/2 divided by 9/10 is 5/3
Answer:
3.5
Step-by-step explanation:
Answer:
y'(t) = k(700,000-y(t)) k>0 is the constant of proportionality
y(0) =0
Step-by-step explanation:
(a.) Formulate a differential equation and initial condition for y(t) = the number of people who have heard the news t days after it has happened.
If we suppose that news spreads through a city of fixed size of 700,000 people at a time rate proportional to the number of people who have not heard the news that means
<em>dy/dt = k(700,000-y(t)) </em>where k is some constant of proportionality.
Since no one has heard the news at first, we have
<em>y(0) = 0 (initial condition)
</em>
We can then state the initial value problem as
y'(t) = k(700,000-y(t))
y(0) =0