1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
coldgirl [10]
3 years ago
6

I need help simplifying 5 1/2 ÷ 2 1/2 then writing it as a mixed number ​

Mathematics
1 answer:
Yakvenalex [24]3 years ago
6 0

Answer:

exact form

11/5

decimal form 2.2

mixed number form 2 1/5

Step-by-step explanation:

You might be interested in
What is 437 divide by 60????
Korolek [52]
It would be 7.283333333
6 0
3 years ago
Read 2 more answers
The total cost (in hundreds of dollars) to produce x units of a product is c(x) = (3x-2) / (8x+1), find the average cost for eac
olya-2409 [2.1K]

Answer:

a) \frac{74}{10025}

b) \frac{3x-2}{x(8x+1)}

c) \frac{-24x^2+32x-2}{(8x^2+x)^2}

Step-by-step explanation:

For total cost function c(x), average cost is given by \frac{c(x)}{x} i.e., total cost divided by number of units produced.

Marginal average cost function refers to derivative of the average cost function i.e., \left ( \frac{c(x)}{x} \right )'

Given:c(x)=\frac{3x-2}{8x+1}

Average cost = \frac{c(x)}{x}=\frac{3x-2}{x(8x+1)}

a)

At x = 50 units,

\frac{c(50)}{50}=\frac{150-2}{50(400+1)}=\frac{148}{50(401)}=\frac{74}{10025}

b)

Average cost = \frac{c(x)}{x}=\frac{3x-2}{x(8x+1)}

c)

Marginal average cost:

Differentiate average cost with respect to x

Take f=3x-2\,,\,g=8x^2+x

using quotient rule, \left ( \frac{f}{g} \right )'=\frac{f'g-fg'}{g^2}

Therefore,

\left ( \frac{c(x)}{x} \right )'=\left ( \frac{3x-2}{8x^2+x} \right )'\\=\left ( \frac{3(8x^2+x)-(16x+1)(3x-2)}{(8x^2+x)^2} \right )\\=\frac{24x^2+3x-48x^2-3x+32x+2}{(8x^2+x)^2}\\=\frac{-24x^2+32x-2}{(8x^2+x)^2}

3 0
3 years ago
Solve the equation 4y-1.9=6.3
Liono4ka [1.6K]
I’ve attached my work...
Hope this helps!

5 0
3 years ago
Read 2 more answers
The manager chooses a student at random. Based on the survey, which statement is true?
jeka57 [31]
What are the statements?
3 0
3 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Other questions:
  • Please help me out with this :)
    14·1 answer
  • What’s the answer? I cannot seem to figure it out
    10·1 answer
  • Adam earns a base pay plus a commission for each car he sells at Crazy Carl's Cool Cars. His monthly salary is modeled by the fu
    9·1 answer
  • If a+b+c =0 show that a³+b³+c³= 3abc
    13·1 answer
  • What is the slope of the line whose equation is -2/3y - = 0?
    14·2 answers
  • Consider the expression (-15) + 8. Describe a situation that could be represented by the expression. Then, find the sum and expl
    12·1 answer
  • Determine the mean of the following numbers: 28, 40, 53, 39, and 45.
    11·2 answers
  • Solve the quadratic equation 3x^2 - 9x + 1 = 0 Give answer to 3 significant figures
    8·1 answer
  • Evaluate each function.<br> 1) f(x) = x2 + 4x; Find f(-7)
    10·1 answer
  • There is a lot of poins pleas help meee​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!