<em><u>throwing a ball up initially has a lot of kinetic energy because it is moving upwards ( kinetic energy is energy which a body possesses by virtue of being in motion.) this all then get converted to gravitational potential energy, and for a moment it is stationary before it begins to fall again. by the time it has returned again, all the gravitational potential energy has turned back into kinetic.</u></em>
Answer:
P = 17.28*10⁶ N
Explanation:
Given
L = 250 mm = 0.25 m
a = 0.54 m
b = 0.40 m
E = 95 GPa = 95*10⁹ Pa
σmax = 80 MPa = 80*10⁶ Pa
ΔL = 0.12%*L = 0.0012*0.25 m = 3*10⁻⁴ m
We get A as follows:
A = a*b = (0.54 m)*(0.40 m) = 0.216 m²
then, we apply the formula
ΔL = P*L/(A*E) ⇒ P = ΔL*A*E/L
⇒ P = (3*10⁻⁴ m)*(0.216 m²)*(95*10⁹ Pa)/(0.25 m)
⇒ P = 24624000 N = 24.624*10⁶ N
Now we can use the equation
σ = P/A
⇒ σ = (24624000 N)/(0.216 m²) = 114000000 Pa = 114 MPa > 80 MPa
So σ > σmax we use σmax
⇒ P = σmax*A = (80*10⁶ Pa)*(0.216 m²) = 17280000 N = 17.28*10⁶ N
Answer:
Your answer would be letter <em><u>B</u></em><em><u>.</u></em><em><u> </u></em><em><u>Electrons</u></em><em><u> </u></em><em><u>orbit</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>nucleus</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>energy</u></em><em><u> </u></em><em><u>level</u></em><em><u>.</u></em>
Explanation:
Hope it helps..
Just correct me if I'm wrong, okay?
But ur welcome!!
(;ŏ﹏ŏ)(◕ᴗ◕✿)
Yes, C is correct. It self explains itself as we know light travels through a vacuum ( doesn't need a medium) and light is a type of electromagnetic wave.