Answer:
measuring the zero intensity point, we can deduce the movement of the screen.
The distance from the center of the pattern to the first zero is proportional to the distance to the screen,
Explanation:
The expression for the diffraction phenomenon is
a sin θ = m λ
for the case of destructive interference. In general the detection screen is quite far from the grid, let's use trigonometry to find the angles
tan θ = y / L
in these experiments the angles are small
tan θ = sin θ / cos θ = sin θ
sunt θ = y / L
we substitute
a
= m λ
y = m L λ / a
therefore, by carefully measuring the zero intensity point, we can deduce the movement of the screen.
The distance from the center of the pattern to the first zero is proportional to the distance to the screen, so you can know where the displacement occurs, it should be clarified that these displacements are very small so the measurement system must be capable To measure quantities on the order of hundredths of a millimeter, a micrometer screw could be used.
answer: c
explanation: it's job is to store and release charge
Answer:
-32.5 * 10^-5 J
Explanation:
The potential energy of this system of charges is;
Ue = kq1q2/r
Where;
k is the Coulumb's constant
q1 and q2 are the magnitudes of the charges
r is the distance of separation between the charges
Substituting values;
Ue = 9.0×10^9 N⋅m2/C2 * 5.5 x 10^-8 C *( -2.3 x10^-8) C/(3.5 * 10^-2)
Ue= -32.5 * 10^-5 J
Answer:
0.83
Explanation:
to figure out what m/s is you would divide the distance by time.
1000 divided by 1200 is equal to .83 so
.83 m/s as your final answer
Answer:
False
Explanation:
A compass can be used to determine relative direction but not absolute direction.