Answer:
20,850 N
Explanation:
We can solve the problem by using second Newton's Law:

where
F is the force
m is the mass
a is the acceleration
In this problem, we have:
m = 70 kg is the mass
is the acceleration (which is negative, because it is a deceleration)
So, we can use the equation above to find the force:

and the negative sign simply means that the force is in the opposite direction to the motion.
Answer: 13.2 seconds.
Explanation: using equation of motion; S= ut +1/2at² where u = initial velocity=0
S= distance travelled
a = acceleration due gravity
t= time.
1 foot = 0.305m so,
S= 2860 feet =872.3m
S= ut+1/2 at²
872.3 = 0×t + 1/2×10 × t²
872.3 =0 + 5t²
T²= 872.3/5
T²= 174.46
Take the square root of T we then have;
t = 13.2 seconds to one decimal place.
If it's not moving at all at the beginning of the 10 seconds, then it falls 490 meters straight down in 10 seconds.
(Note: This is true of all objects on Earth . . . rubber balls, feathers, grains of sand, school buses, battle ships . . . everything. As long as air doesn't hold them back. Anything falling from rest falls 490 meters in the first 10 seconds.)
Answer:
depends on what type of car it is
Explanation:
Answer:height above ground at which projectile have velocity
0.5v is (0.0375v^2)
Explanation:
Using Vf = Vi - gt
Where Vf is final velocity
Vi is initial velocity
g is the acceleration due to gravity
t is the time taken
So, 0.5v = v - gt
t = 0.05v
Therefore height h = vt - 0.5gt^2
Subtitute t
h = 0.05v^2 - 0.0125v^2
h = 0.0375v^2