P=IV
V=IR
P=I(IR)
P=I²R
375=5²R
R=375/25
R=15
density = mass/volume = 100kg/10ml = 10kg/ml
voluime = mass/density = 50g/2 g/ml = 25 ml
mass = density x volume = 2x55 = 110 kg
This would be true. On Jupiter you would weigh 234 pounds if you were 100 pounds on Earth.
Answer:
a) 12.8212 N
b) 12.642 N
Explanation:
Mass of bucket = m = 0.54 kg
Rate of filling with sand = 56.0 g/ sec = 0.056 kg/s
Speed of sand = 3.2 m/s
g= 9.8 m/sec2
<u>Condition (a);</u>
Mass of sand = Ms = 0.75 kg
So total mass becomes = bucket mass + sand mass = 0.54 +0.75=1.29 kg
== > total weight = 1.29 × 9.8 = 12.642 N
Now impact of sand = rate of filling × velocity = 0.056 × 3.2 = 0.1792 kg. m /sec2=0.1792 N
Scale reading is sum of impact of sand and weight force ;
i-e
scale reading = 12.642 N+0.1792 N = 12.8212 N
<u>Codition (b);</u>
bucket mass + sand mass = 0.54 +0.75=1.29 kg
==>weight = mg = 1.29 × 9.8 = 12.642 N (readily calculated above as well)
Answer:
Explanation:
Let the critical angle be C .
sinC = 1 / μ where μ is index of refraction .
sinC = 1 /1.2
= .833
C = 56°
Then angle of refraction r = 90 - 56 = 34 ( see the image in attached file )
sin i / sinr = 1.2 , i is angle of incidence
sini = 1.2 x sinr = 1.2 x sin 34 = .67
i = 42°.