Answer:
Inside the strong metal box, there is a microwave generator called a magnetron. When you start cooking, the magnetron takes electricity from the power outlet and converts it into high-powered, 12cm (4.7 inch) radio waves. Thus the microwaves pass their energy onto the molecules in the food, rapidly heating it up.May 3, 2018
You'll be using the equation f = m a, or force = mass x acceleration
First, you have to find the acceleration. The acceleration needed is the average acceleration over the 15 seconds is accelerated. So, you take the change in speed (25m/s - 15m/s) to get a change of 10m/s.
The average acceleration (acceleration per second) is found by dividing total acceleration by the time it took. So, it's 10 / 15, which equals .6. This is a, your acceleration
Now just plug it into the equation F = m a, because it already gives you the mass of the car
F = 550 x .6
Solve that to get F = 366.6. F is measured in Newtons (N), so your answer is 366.6N
Answer:because developed cities are more equipped to deal with raw sewage than less developed cities
Explanation:
Answer:
Acceleration of the plane, a = 5.4 g
Explanation:
It is given that,
Speed of the jet plane, v = 1890 km/h = 525 m/s
Radius of the arc, r = 5.20 km = 5200 m
The plane is moving in the circular path, the centripetal acceleration will act on it. It is given by :



We know that, the value of g is, 


So, the acceleration of the plane is 5.4 g. Hence, this is the required solution.
Answer:
The apparent depth of (a) the fish is 5.3 cm and (b) the image of the fish is 24.8 cm.
Explanation:
According to the following equation:

where <em>nw</em> and <em>na</em> is the refractive indices of water (1.33) and air (1.00) respectively; <em>s</em> is the depth of the fish below the surface of the water; s' is the apparent depth of the fish from normal incidence and Rc is the radius of curvature of the mirror at the bottom of the tank.
Note that the bottom of the tank is assumed to be a flat mirror, therefore the radius of curvature is very large (R⇒∞).
Therefore, the above equation can be expressed as:

Now we can solve for the apparent depth of the fish.
(a)
(Make s' subject of the formula from the above equation)

∴ 
(b) The motionless fish floats 13 cm above the mirror, therefore the image of the fish will be situated at 13 + 20 =33 cm away from the real fish.
Therefore, s = 33 cm



NB: Here, it is assumed that the water is pure, as impurities may alter the refractive index of water.