Answer:
The Current Iₜ = I₁ + I₂ + I₃
Charge Qₜ = Q₁ + Q₂ + Q₃
Potential difference Vₜ = V₁ = V₂ = V₃
The total capacitance Cₜ = C₁ + C₂ + C₃
Explanation:
According to the attached image;
For parallel arrangements of capacitors, the current flowing through each of the capacitors sums up to the total current flowing through the circuit;
Iₜ = I₁ + I₂ + I₃
Also the charge storage by each capacitor sums up to give the total charge stored;
Qₜ = Q₁ + Q₂ + Q₃
The potential difference across each of the capacitors are the same and equal to the total voltage across the circuit;
Vₜ = V₁ = V₂ = V₃
The total capacitance equals the sum of the capacitances of each of the capacitors;
Cₜ = C₁ + C₂ + C₃
A developing story hope it helped
<span>The energy of a single photon is given by E = hc/lambda, where h is Planck's constant, c is the speed of light, and lambda is the wavelength.
Plugging the values in gives E = 6.63E-34 x 3.00E8 / 700E-9 = 2.84E-19 Joules
Now one mole of substance is equivalent to 6.02E23 particles, so one mole of these photons will be:
2.84E-19 x 6.02E23 = 1.71E5 Joules</span>